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Abstract.

Asynchronous communication is often viewed as a single entity, the counterpart of synchronous commu-
nication. Although the basic concept of asynchronous communication is the decoupling of send and receive
events, there is actually room for a variety of additional speci�cation of the communication, for instance in
terms of ordering. Yet, these di�erent asynchronous communications are used interchangeably and seldom
distinguished. This paper is a contribution to the study of these models, their di�erences, and how they are
related.

In this paper, the variety of point-to-point asynchronous communication paradigms is considered with two
approaches. In the �rst and theoretical one, communication models are speci�ed as properties on the ordering
of events in distributed executions. In the second and more practical approach that involves composition of
peers, they are modeled with transition systems and message histories as part of a framework. The described
framework enables to model peer composition and compatibility properties. Besides, an implemented tool
chain based on the TLA+ formalism and model checking is also proposed and illustrated.

The conformance of the two approaches is highlighted. A hierarchy is established between the studied
communication models. From the execution viewpoint, it completes existing work in the area by introducing
more asynchronous communication models and showing their di�erences. The framework is shown to o�er
abstract implementations of the communication models. Both the correctness and the completeness of the
descriptions in the framework are studied. This reveals necessary restrictions on the behavior of the peers
so that the communication models are actually implementable.
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1. Introduction

Building systems through selecting, and then assembling and coordinating o�-the-shelf components or ser-
vices is a common software production principle, which is emblematically illustrated by the development of
Cloud-based services. The formal veri�cation of the correctness of the composition of a set of peers is cru-
cial to this approach. We consider this issue in the particular perspective of the development of distributed
software systems taking into account the diversity of asynchronous communication models.

In this setting, the communication models (e.g. synchronous or asynchronous, multicast or point to
point) directly impact the properties of the global system. Although the question of characterizing the
properties of a set of combined services has been extensively studied for quite a long time (notions of
design by contract [Mey92], of compatibility of communicating components [BZ83, LW11]), existing works
are restricted, to the best of our knowledge, to a speci�c communication model (either synchronous or
asynchronous, or coupling via bounded bu�ers), to which their formalization and veri�cation framework are
dedicated. However, in distributed algorithms research, it has long been known that the properties of the
communication, and especially the order of message delivery, is essential to the correctness of the system.
For instance, the Chandy-Lamport snapshot algorithm [CL85] requires that the communication between two
processes is FIFO, and Misra's algorithm for termination detection [Mis83] works with a ring containing
each node if the communication ensures causal delivery, but requires a cycle visiting all network edges if
communication is only FIFO.

We present a framework to verify the correctness of a composition of peers with asynchronous commu-
nication. The �rst step is to explore the diversity of asynchronous communication models, to identify the
more relevant ones, to uniformly de�ne them, and to study the relations between them. Then, a framework
is built to verify the correctness of a composition of peers parameterized by the communication model.

To get an intuition of the results, consider two peers (or processes, or services) described by the transition

systems
a!−→ · b!−→ and

a?−→ · b?−→, where a! and b! are interpreted as emission events on channels a and b, and
a? and b? are receive events on a and b. In the synchronous world (i.e. CCS), the compatibility of these
two processes is well de�ned: both processes match on a �rst rendez-vous on a, then proceed to a second
rendez-vous on b, and terminate. However, this is less clear in an asynchronous world. Traditionally, from
a distributed systems point of view, one considers that the communication medium controls the message
deliveries: it pushes messages up to the applications. Applications are limited to specify which channels they
listen to, but they cannot impose a delivery order. In our example, if the communication medium ensures
FIFO ordering (i.e. messages from one process to another are necessarily delivered in their emission order),
then the message on a is delivered before the message on b, and we say that the two peers are compatible
and terminate. However, if the communication medium is totally asynchronous and does not ensure any
ordering, the message on b may be delivered before the message on a, but the second process does not
expect this situation: compatibility is not guaranteed. Among the di�culties, a peer must be isolated from
the other peers: it does not have to be ready for all kinds of messages. For instance, if the previous system

also comprises two other peers
c?−→ and

c!−→, a message on c may be in transit. However, the communication

medium will never deliver this message to the peer
a?−→ · b?−→, as this message does not concern it. One last

point is that the peers communicate through channels, and messages do not have an explicit destination
process: our framework does not impose that channels have a unique sender and a unique receiver. This
allows to naturally describe arbitrary client-server and publish-subscribe architectures.

The main results of this paper are:

• The uni�ed description of seven asynchronous communication models (Section 2.4);

• The complete hierarchy of the models (Theorem 3.2);

• The formalization of the communication models (Table 2);

• The presentation of a framework to verify the correctness of a composition of peers with an asynchronous
communication model (De�nition 4.4);

• The proofs of correctness and completeness of the framework (Theorems 5.9 and 5.12).

The outline of this paper is the following. Section 2 presents the seven asynchronous communication
models which are studied in this paper; the �rst part of this section recalls basic de�nitions and results
of the theory of distributed systems, and then proceeds to present some standard and other less classic
models. Section 3 compares these communication models with regard to executions, and gives their complete



On the Diversity of Asynchronous Communication 3

hierarchy. Section 4 presents a framework which aims at checking compatibility properties over a composition
of a set of peers and a communication model (possibly composite). Section 5 details the validation of the
framework and shows the relations between the descriptions of the communication models in Section 2 and
Section 4. Section 6 illustrates our approach with three case studies, and provides the results obtained with
TLC, the TLA+ model checker [Lam02]. Section 7 provides an overview of the conceptual background of
this work and, eventually, the conclusion draws perspectives after summing up this work.

2. Communication Models: Concrete De�nitions

This section introduces classic de�nitions of distributed executions and event ordering [BM93, Tel00, Ray13]
and presents seven asynchronous point-to-point communication models in a uni�ed way.

2.1. Distributed Systems

A message-passing distributed system is composed of a set of peers (or processes, or nodes) which exchange
messages. Without loss of generality, messages are unique. A distributed execution is described with events:
message send events, message receive events, and internal events (respectively noted s(m), r(m), and i).
An execution is a sequence of events, obtained from the interleaving of peer sequences. As we only consider
stable or local properties (termination, deadlock, faulty reception, never received message) and peers have no
internal concurrency, interleaving and true parallelism are indistinguishable: the only properties which are
not observable and not veri�able with interleaving are transitory global predicates [Cha97]. This paper only
considers point-to-point communication, that is a message has exactly one sender and at most one receiver.
Note that De�nition 2.2 allows sent messages to never be received. This can be interpreted as the loss of the
message, and is indistinguishable from a message staying forever in the network.

De�nition 2.1 (Events). Let PEER be a set of peers, MES be an enumerable set of messages. The set
of events is:

EVENT ∆
= {ip | p ∈ PEER} ∪ {sp(m), rp(m) | p ∈ PEER,m ∈ MES}

To ease notation, the index p is omitted and, when the peer is needed for an event e of an execution,
peer(e) is the peer where e occurs.

De�nition 2.2 (Distributed Execution). EXEC, the set of all possible executions over the events
EVENT , is the set of all �nite or in�nite sequences of events such that messages are unique, and such
that a receive event of a message is preceded by a send event of this message:

SEQ ∆
= EVENT ∗ ∪ EVENT ω

EXEC ∆
=

{
σ ∈ SEQ

∣∣∣∣∣∀m ∈ MES :
∀j , k ∈ dom(σ) : σ[j ] = s(m) ∧ σ[k ] = s(m)⇒ j = k
∧ ∀j , k ∈ dom(σ) : σ[j ] = r(m) ∧ σ[k ] = r(m)⇒ j = k
∧ ∀j ∈ dom(σ) : σ[j ] = r(m)⇒ ∃k ∈ dom(σ) : σ[k ] = s(m) ∧ k < j

}
To simplify notation, we write e ∈ σ to state that event e occurs in execution σ. It is a shortcut for

∃j ∈ dom(σ) : σ[j ] = e.

Lemma 2.3 (Pre�xes of an Execution). Any pre�x of a distributed execution is a distributed execution.

Proof. From the de�nition of an execution.

2.2. Event Ordering

When considering an execution σ, three orders are de�ned: a local order on each peer, the execution total
order, and the causal order [Lam78] which abstracts independent events. The causal order relation is here
given in its usual form [Lam78, Mat89, CDK94, Ray13].

De�nition 2.4 (Execution Order). e1 ≺σ e2
∆
= ∃j , k ∈ dom(σ) : j ≤ k ∧ σ[j ] = e1 ∧ σ[k ] = e2
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Mn−n Mn−1 Mcausal M1−1 M1−n
s(m1) ≺σ s(m2) s(m1) ≺σ s(m2) ∧ s(m1) ≺causal s(m2) ∧ s(m1) ≺peer s(m2) ∧ s(m1) ≺peer s(m2)

peer(r(m1)) = peer(r(m2)) peer(r(m1)) = peer(r(m2)) peer(r(m1)) = peer(r(m2))

Table 1. Delivery Order Predicates

De�nition 2.5 (Peer Order). e1 ≺peer e2
∆
= peer(e1) = peer(e2) ∧ e1 ≺σ e2

De�nition 2.6 (Causal Order). ≺causal is the smallest relation such that

∀e1, e2 ∈ σ : e1 ≺causal e2 ⇔

{
e1 ≺peer e2 (peer ordering)
∨ ∃m ∈ MES : e1 = s(m) ∧ e2 = r(m) (message transfer)
∨ ∃e3 ∈ σ : e1 ≺causal e3 ∧ e3 ≺causal e2 (transitivity)

Theorem 2.7 (Order Inclusion).

∀σ ∈ EXEC,∀e1, e2 ∈ σ : e1 ≺peer e2 ⇒ e1 ≺causal e2
∀σ ∈ EXEC,∀e1, e2 ∈ σ : e1 ≺causal e2 ⇒ e1 ≺σ e2

Proof. This theorem is classic and directly derives from the de�nition of the orders and executions.

2.3. Delivery Order

The communication enforces a delivery order if the order of message receptions is in relation with the order
of their emissions. Thus, a communication model imposes an order on the message receptions, based on some
speci�c predicate. An execution σ conforms to a communication model CM if all receptions are correctly
ordered with regard to the delivery predicate of this model. Except for the �rst model (RSC), the set of valid
executions of CM is de�ned according to a common pattern which takes the form:

Exec(CM )
∆
=

σ ∈ EXEC
∣∣∣∣∣∣ ∀m1,m2 ∈ MES :

r(m1) ∈ σ ∧ r(m2) ∈ σ
∧ condition on s(m1), s(m2), r(m1), r(m2)

⇒ r(m1) ≺σ r(m2)


where the delivery predicate is speci�c to the communication model and forces an order on two receive events
based on some property on the send and receive events.

2.4. Asynchronous Communication Models

We present seven asynchronous point-to-point communication models, and �ve of them are summed up in
Table 1 (fully asynchronous communication and RSC communication are omitted). There are four variants
of FIFO communication, according to the peers involved: M1−1 coordinates one sender with one receiver,
Mn−1 coordinates all the senders of a unique receiver, M1−n coordinates one sender with all its destinations,
and Mn−n coordinates all the senders with all the receivers. Additionally, there are causal communication
Mcausal , pseudo-synchronous communication Mrsc , and fully asynchronous communication Masync . Applica-
tive ordering, such as message priorities, could also be used. As our goal is to compare communication models
without considering a speci�c application, such orderings are not considered.

2.4.1. Mrsc Realizable with Synchronous Communication

An execution is realizable with synchronous communication if each send event is immediately followed by
its corresponding receive event [CBMT96, KS11]. If the couple (send event, corresponding receive event) is
viewed atomically, this corresponds to a synchronous communication execution. Figure 1 illustrates Mrsc .

De�nition 2.8 (RSC).

Exec(Mrsc)
∆
= {σ ∈ EXEC | ∀m ∈ MES : r(m) ∈ σ ⇒ ∀e ∈ σ : s(m) ≺σ e ≺σ r(m)⇒ e ∈ {r(m), s(m), i}}

This model can be implemented with a 1-slot unique bu�er shared by all peers. After a communication
transition consisting of a send event of a message, the only possible communication transition is the receive
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Non RSC execution RSC execution

s(m1)

r(m1)s(m2)

r(m2) s(m1)

r(m1) s(m2)

r(m2)

Fig. 1. RSC executions

s(m1)

r(m1)r(m2)

s(m2)

s(m1)

r(m1) r(m2)

s(m2)

Non FIFO n-n execution FIFO n-n execution

Fig. 2. FIFO n-n executions

event of this message. Thus, this asynchronous model is the closest one to synchronous communication. The
di�erence is that this model allows interleaving of internal transitions (by the sender, the receiver, or any
other peer) between the sending of a message and its reception, and can avoid deadlock by divergence with
one never received message (an execution s(m) iω).

2.4.2. Mn−n FIFO n-n Communication

Messages are globally ordered and are delivered in their emission order. This model is based on a shared
centralized object (e.g. a unique queue), and its implementations are ine�cient and unrealistic. Usually, it is
used as a �rst step to move away from the synchronous communication model, by splitting send and receive
events. Figure 2 illustrates Mn−n .

De�nition 2.9 (FIFO n-n).

Exec(Mn−n)
∆
=

{
σ ∈ EXEC

∣∣∣∣∣ ∀m1,m2 ∈ MES :
r(m1) ∈ σ ∧ r(m2) ∈ σ
∧ s(m1) ≺σ s(m2)
⇒ r(m1) ≺σ r(m2)

}
A variant exists where the number of messages in transit is bounded. With pre�x (σ, j ) being the pre�x

of an execution σ up to point j , this can be expressed as:
max

j ∈ dom(σ)
|{m ∈ MES : s(m) ∈ pre�x (σ, j ) ∧ r(m) /∈ pre�x (σ, j )}| ≤ bound .

The other models have similar bounded variants which are not detailed.

2.4.3. Mn−1 FIFO n-1 Communication

Each peer has a unique input queue (a.k.a mailbox). A send event consists in adding the message at the end
of the queue of the destination peer, without blocking. The message will later be removed from the queue,
according to the insertion order. This model is used for instance in [BBO12, OSB13] as an abstraction of
asynchronous communication. This model is often confused with the FIFO 1-1 model (described below)
whereas it is stricter. Even if the send events are independent, the delivery order is their send order in
absolute time. A send event is implicitly and globally ordered with regard to all other emissions toward the
same peer. This means that if a peer p consumes m1 (sent by a peer q1) and later m2 (sent by peer q2),
peer p knows that the sending on peer q1 occurs before the sending on peer q2 in the global execution order,
even if there is no causal path between the two emissions. Thus, an implementation of this model requires
a shared real-time clock [CF99] or a global agreement on event order [DSU04, Ray10]. Figure 3 illustrates
Mn−1.

De�nition 2.10 (FIFO n-1).

Exec(Mn−1)
∆
=

{
σ ∈ EXEC

∣∣∣∣∣ ∀m1,m2 ∈ MES :
r(m1) ∈ σ ∧ r(m2) ∈ σ
∧ s(m1) ≺σ s(m2) ∧ peer(r(m1)) = peer(r(m2))
⇒ r(m1) ≺σ r(m2)

}

2.4.4. M1−n FIFO 1-n Communication

Messages from a same peer are delivered in their send order. This model is the dual of FIFO n-1, but is less
intuitive as it is inducing a separate global order on the receivers, one for each sender. Its implementation is
not expensive: each peer has a unique queue where sent messages are put. Destination peers fetch messages
from this queue and acknowledge their reception. Figure 4 illustrates M1−n .
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s(m1)

r(m1)r(m2)

s(m2)

s(m1)

r(m1) r(m2)

s(m2)

Non FIFO n-1 execution FIFO n-1 execution

Fig. 3. FIFO n-1 executions
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Fig. 4. FIFO 1-n executions
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Fig. 5. Causal executions

Non FIFO 1-1 execution FIFO 1-1 execution

s(m1)

r(m1)r(m2)

s(m2) s(m1)

r(m1) r(m2)

s(m2)

Fig. 6. FIFO 1-1 executions

De�nition 2.11 (FIFO 1-n).

Exec(M1−n)
∆
=

{
σ ∈ EXEC

∣∣∣∣∣ ∀m1,m2 ∈ MES :
r(m1) ∈ σ ∧ r(m2) ∈ σ
∧ s(m1) ≺peer s(m2)
⇒ r(m1) ≺σ r(m2)

}
(the form of the delivery predicate ensures that the send events occur on the same peer)

2.4.5. Mcausal Causally Ordered Communication

Messages are delivered according to the causality of their emissions [Lam78]. More precisely, if a message m1

is causally sent before a message m2 (i.e. there exists a causal path from the �rst emission to the second one),
then a peer cannot get m2 before m1. An implementation of this model requires the sharing of the causality
relation, using causal histories [SM94, KS98] or logical vector/matrix clocks [RST91, CDK94, PRS97, Ray13].
Figure 5 illustrates Mcausal .

De�nition 2.12 (Causal).

Exec(Mcausal)
∆
=

{
σ ∈ EXEC

∣∣∣∣∣ ∀m1,m2 ∈ MES :
r(m1) ∈ σ ∧ r(m2) ∈ σ
∧ s(m1) ≺causal s(m2) ∧ peer(r(m1)) = peer(r(m2))
⇒ r(m1) ≺σ r(m2)

}

2.4.6. M1−1 FIFO 1-1 Communication

Messages between a couple of peers are delivered in their send order. Messages from/to di�erent peers are
independently delivered. More precisely, if a peer sends a message m1 and later a message m2, and these
two messages are consumed by a same peer, then m2 cannot be consumed before m1. This model is easily
described with a simple queue between each pair of peers. An implementation can be as inexpensive as an
integer counter for each pair of peers. Figure 6 illustrates M1−1.

De�nition 2.13 (FIFO 1-1).

Exec(M1−1)
∆
=

{
σ ∈ EXEC

∣∣∣∣∣ ∀m1,m2 ∈ MES :
r(m1) ∈ σ ∧ r(m2) ∈ σ
∧ s(m1) ≺peer s(m2) ∧ peer(r(m1)) = peer(r(m2))
⇒ r(m1) ≺σ r(m2)

}

2.4.7. Masync Fully Asynchronous Communication

No order on message delivery is imposed. Messages can overtake others or be arbitrarily delayed. The
implementation is usually modeled by a bag (or a set if messages are unique).

De�nition 2.14 (Asynchronous).

Exec(Masync)
∆
= EXEC
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RSC

FIFO n-n

FIFO 1-n FIFO n-1

causal

asynchronous

FIFO 1-1

1
2

3
45

676

Fig. 7. Hierarchy of the Communication Models

2.4.8. Execution Pre�xes

Theorem 2.15.

∀M ∈ {Mrsc ,Mn−n ,Mn−1,Mcausal ,M1−n ,M1−1,Masync},∀σ ∈ EXEC :
σ ∈ Exec(M )⇔ ∀σ′ ∈ pre�xes(σ) : σ′ ∈ Exec(M )

Proof. All delivery conditions are exclusively safety properties. Thus, all pre�xes of an execution which
satis�es a delivery condition satisfy this delivery condition. And conversely, if all �nite pre�xes satisfy it, the
(possibly in�nite) execution satis�es it.

3. Comparison of the Communication Models

3.1. Hierarchy of the Models

The executions which are valid for a given model may also be valid for another model. This means that,
for these executions, we can switch whatever of these models is considered. Knowing which model can be
replaced by which is of great interest to study the potential compatibility of peers. Model inclusions are
given by Theorem 3.2, which is illustrated in Figure 7.

De�nition 3.1 (Model Inclusion). A communication model M1 is included in M2 i� all valid executions
of M1 are also valid in M2:

M1 ⊆ M2
∆
= Exec(M1) ⊆ Exec(M2)

Theorem 3.2 (Hierarchy of the Communication Models).

• Mrsc ( Mn−n ( Mn−1 ( Mcausal ( M1−1 ( Masync

• Mrsc ( Mn−n ( M1−n ( Mcausal ( M1−1 ( Masync

• M1−n and Mn−1 are not comparable.

3.2. Proof of Theorem 3.2

3.2.1. Simple Proofs

Almost all inclusions directly derive from the delivery predicates and the order inclusion (Theorem 2.7).

• Mrsc ⊆ Mn−n : Mrsc is Mn−n constrained by a bound of 1.
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• Mn−n ⊆ Mn−1: The delivery predicate of Mn−1 implies the delivery predicate of Mn−n , thus
∀σ ∈ Exec(Mn−n) : σ ∈ Exec(Mn−1).

• Mn−1 ⊆ Mcausal : From Theorem 2.7, the delivery predicate of Mcausal implies the delivery predicate of
Mn−1, thus ∀σ ∈ Exec(Mn−1) : σ ∈ Exec(Mcausal).

• Mcausal ⊆ M1−1: From Theorem 2.7, the delivery predicate of M1−1 implies the delivery predicate of
Mcausal , thus ∀σ ∈ Exec(Mcausal) : σ ∈ Exec(M1−1).

• Mn−n ⊆ M1−n : From Theorem 2.7, the delivery predicate of M1−n implies the delivery predicate of
Mn−n , thus ∀σ ∈ Exec(Mn−n) : σ ∈ Exec(M1−n).

3.2.2. Proof of M1−n ⊆ Mcausal

To facilitate induction, the causality relation (De�nition 2.6) is rewritten by expanding the base case in the
transitivity formula:

Lemma 3.3 (Causal Order). ≺causal is the smallest relation on σ such that ∀e1, e2 ∈ σ :

e1 ≺causal e2 ⇔
{

e1 ≺elem e2
or ∃e3 ∈ σ, e1 6= e3 : e1 ≺elem e3 ∧ e3 ≺causal e2

where e1 ≺elem e2
∆
=

{
e1 ≺peer e2

or ∃m ∈ MES, e1 = s(m) ∧ e2 = r(m)

Proof. This is the transformation of �transitivity n-n� to �transitivity 1-n�, and the two de�nitions are proven
equivalent in Coq Standard Library (module Relations).

Lemma 3.4 (Causal events on di�erent peers are linked by a message).

∀σ ∈ EXEC,∀e1, e2 ∈ σ : e1 ≺causal e2 ∧ peer(e1) 6= peer(e2)⇒ ∃m : e1 ≺peer s(m) ∧ r(m) ≺causal e2
This lemma states that it is impossible to have two causally related events on di�erent peers without at

least one message between them: messages are the only causal links between peers.

Proof. Let σ ∈ EXEC an execution, and e1, e2 such that e1, e2 ∈ σ, e1 ≺causal e2 and peer(e1) 6= peer(e2).
Let's prove that ∃m, e1 ≺peer s(m) ∧ r(m) ≺causal e2 by induction on the principle underlying Lemma 3.3.

• Case e1 ≺elem e2 : Either e1 ≺peer e2, which is incompatible with the hypothesis peer(e1) 6= peer(e2). Or
∃m, e1 = s(m) ∧ e2 = r(m). So ∃m, e1 ≺peer s(m) ∧ r(m) ≺causal e2 (since ≺peer and ≺causal are order
relations, they are re�exive).

• Case ∃e3 ∈ σ : e3 6= e1 ∧ e1 ≺elem e3 ∧ e3 ≺causal e2, with the induction hypothesis true for e3 ≺causal e2 :

� either peer(e1) = peer(e3), so peer(e3) 6= peer(e2). By the induction hypothesis: ∃m, e3 ≺peer s(m) ∧
r(m) ≺causal e2. Since e1 ≺peer e3, the transitivity of the peer order gives ∃m, e1 ≺peer s(m) ∧
r(m) ≺causal e2.

� or peer(e1) 6= peer(e3). From Lemma 3.3, it follows that ∃m, e1 = s(m) ∧ e3 = r(m), so ∃m, e1 ≺peer
s(m)∧r(m) ≺causal e3. The transitivity of the causal order gives ∃m, e1 ≺peer s(m)∧r(m) ≺causal e2.

Lemma 3.5 (Reception of causal send events in a valid FIFO 1-n execution).

∀σ ∈ Exec(M1−n),∀m1,m2 ∈ MES : s(m1) ≺causal s(m2) ∧ r(m1) ∈ σ ∧ r(m2) ∈ σ ⇒ r(m1) ≺σ r(m2)

This lemma expresses that, in the M1−n model, the reception of a message m2 ensures that a causally
preceding message m1 cannot be received later.

Proof.1 Let σ ∈ Exec(M1−n), and m1,m2 such that s(m1) ≺causal s(m2). Let's prove that r(m1) ∈ σ ∧
r(m2) ∈ σ ⇒ r(m1) ≺σ r(m2).

• either peer(s(m1)) = peer(s(m2))

1 In the next proofs, we use X =⇒(Thm.x) Y to mean �from X , Theorem x (or de�nition or lemma. . . ), and the preceding

properties/hypotheses, we deduce that Y �.
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� s(m1) ≺causal s(m2) =⇒(Thm. 2.7) s(m1) ≺σ s(m2)

� peer(s(m1)) = peer(s(m2)) =⇒(Def . 2.5,Thm. 2.7) s(m1) ≺peer s(m2) =⇒(Def . 2.11) (r(m1) ∈ σ ∧
r(m2) ∈ σ ⇒ r(m1) ≺σ r(m2)).

• or peer(s(m1)) 6= peer(s(m2))

� peer(s(m1)) 6= peer(s(m2)) =⇒(Lemma 3.4) ∃m, s(m1) ≺peer s(m) ∧ r(m) ≺causal s(m2), so r(m) ∈ σ.
� σ ∈ Exec(M1−n) ∧ r(m) ∈ σ ∧ s(m1) ≺peer s(m) =⇒(Def . 2.11) (r(m1) ∈ σ ⇒ r(m1) ≺σ r(m))

� r(m2) ∈ σ =⇒(Def . 2.2) s(m2) ≺σ r(m2)

� r(m) ≺causal s(m2) ∧ s(m2) ≺σ r(m2) =⇒(Thm. 2.7, transitivity of ≺σ) r(m) ≺σ r(m2)

� so r(m1) ∈ σ ∧ r(m2) ∈ σ ⇒ r(m1) ≺σ r(m2)

From Lemma 3.5, we deduce that ∀σ ∈ Exec(M1−n) : σ ∈ Exec(Mcausal).
This concludes the inclusion proofs of Theorem 3.2.

3.2.3. Proofs of Strict Inclusion

All inclusions are strict, and M1−n and Mn−1 are not comparable. It su�ces to give an example in each case,
numbered 1 to 7 in Figure 7. Examples are a system composed of a set of peers (described by a labelled
transition system), and an execution which is valid in a communication model, invalid in another model.

System Execution

1 asynchronous, not FIFO 1-1
s(a)−−−→ s(b)−−→ ‖ r(b)−−→ r(a)−−−→ s(a) s(b) r(b) r(a)

2 FIFO 1-1, not causal
s(a)−−−→ s(b)−−→ ‖ r(b)−−→ s(c)−−→ ‖ r(c)−−→ r(a)−−−→ s(a) s(b) r(b) s(c) r(c) r(a)

3 Causal, neither n-1 nor 1-n
s(a)−−−→ s(b)−−→ ‖ s(c)−−→ ‖ r(c)−−→ r(a)−−−→ ‖ r(b)−−→ s(a) s(b) s(c) r(c) r(b) r(a)

4 n-1, neither 1-n nor n-n
s(a)−−−→ s(b)−−→ ‖ r(a)−−−→ ‖ r(b)−−→ s(a) s(b) r(b) r(a)

5 1-n, neither n-1 nor n-n
s(a)−−−→ ‖ s(b)−−→ ‖ r(a)−−−→ r(b)−−→ s(b) s(a) r(a) r(b)

6 1-n and n-1, not n-n
s(a)−−−→ ‖ s(b)−−→ ‖ r(a)−−−→ ‖ r(b)−−→ s(a) s(b) r(b) r(a)

7 n-n, not RSC
s(a)−−−→ s(b)−−→ ‖ r(a)−−−→ r(b)−−→ s(a) s(b) r(a) r(b)

4. A Framework for the Veri�cation of Asynchronously Communicating Peers2

Our objective is to check the compatibility of the composition of a set of peers, given a behavorial description
of the peers and a communication model. One solution could be to extensionally build all the executions of
this set of peers, then reduce this set by keeping only the relevant executions of the chosen communication
model, and lastly evaluate properties on this set (non-emptiness, temporal properties. . . ). This solution
would strictly reuse the predicates of Section 2. However, it is not satisfactory because the predicates are
about whole executions and are not directly implementable: they are oracles, in the sense that a reception
is valid at a given point with regard to all events, before and after it. For instance, consider M1−1 and
two messages m1 and m2 sent by the same peer in this order; the reception of m2 on a peer p at time
t is correct if this peer p will never receive m1 at time t ′ > t . The veri�cation of compatibility has to
be of practical use: the decision by a communication model to deliver a message must be based only on
past events, and not on the possible occurrence of future events. Our description of the communication
models should be operational but it should also be as abstract as possible, to not preclude implementations,
so that the compatibility can be ascertained for any realistic implementations. The formalization is based
on histories which grab just enough information on the past to build valid executions. The framework is
presented in two sections: this section describes the framework itself, and the next section demonstrates its
validity. Its correctness (the executions generated by the framework for a communication model are correct)

2 This section and the example section 6 are expanded versions of [CHQ15]. The other sections were not part of it.
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TLA+ module
Composition

Other peers

System
Compatibility

result
Counter-
example

TLA+ module
Communication Model

LTL properties
Compatibility Criteria

Transition system
Peer

Fig. 8. Main Steps Performed by the Framework

and completeness (the framework generates all possible executions for a model) require well-behaved peers,
so that the communication model does not have to look at the future to make a correct decision.

Communication consists in exchanging messages whose content is not relevant outside the scope of peers'
internal behavior. Messages are sent on channels. Channels do not have explicit sender and receiver, and
are not limited to one sender/one receiver. Channels are nevertheless a point-to-point communication ab-
straction: a given message has exactly one sender and at most one receiver. This allows for richer and more
elegant system speci�cations, where for instance a message is received by a peer that depends on the state
of the communication medium.

Peers are speci�ed using transition systems labelled by communication events or internal actions. This
provides simplicity and �exibility in theoretical and practical uses. It is a basic structure that is adapted
to veri�cation techniques like model checking. It also allows to specify properties of interest using temporal
logic. Optionally, in order to ease the speci�cation of peers, the transitions systems can be derived from
process calculi terms such as CCS [Mil82]. Since communication models are speci�ed using similar transition
systems, modeling the communication interactions simply consists in an operation close to a synchronous
product of labeled transition systems.

All these notions are directly translated into TLA+ speci�cations, and the TLA+ tools are used to verify
the compatibility properties. Figure 8 provides an overview of the di�erent steps and elements used to
perform the veri�cation of a composition. They will be detailed in the following sections.

4.1. TLA+ Speci�cation Language

TLA+ [Lam02] is a formal speci�cation language based on untyped Zermelo-Fraenkel set theory for specifying
data structures, and on the temporal logic of actions (TLA) for specifying dynamic behaviors. Expressions
rely on standard �rst-order logic, set operators, and several arithmetic modules. Hilbert's choice operator,
written as choose x ∈ S : p, deterministically picks an arbitrary value in S which satis�es p, provided such
a value exists (its value is unde�ned otherwise).

Functions are primitive objects in TLA+, and tuples are a particular kind of function. The application
of function f to an expression e is written as f [e]. The set of functions whose domain is X and whose
co-domain is a subset of Y is written as [X → Y ]. The expression domain f is the domain of the function f .
The expression [x ∈ X 7→ e] denotes the function with domain X that maps any x ∈ X to e. The notation
[f except ![e1] = e2] is a function which is equal to the function f except at point e1, where its value is e2.
Tuples (a.k.a sequences) are functions with domain 1..n,n ∈ Nat . Tuples are written 〈a1, a2, a3〉. 〈〉 is the
empty sequence.

Modules are used to structure complex speci�cations. A module contains constant declarations, variable
declarations, and de�nitions. A module can extend other modules, importing all their declarations and de�ni-
tions. A module can also be an instantiation of another module. The moduleMI

∆
= instance M with q1 ←

e1, q2 ← e2 . . . is an instantiation of module M , where each symbol qi is replaced by ei (qi are identi�ers
specifying constants or variables of module M , and ei are expressions). Then MI !x references the symbol x
of the instantiated module.

Other than constant and variable declarations, a module contains de�nitions in the form
Op(arg1, . . . , argn)

∆
= exp. This de�nes the symbol Op such that Op(e1, . . . , en) equals exp, where each argi

is replaced by ei . In case of no argument, it is written as Op
∆
= e. A de�nition is just an abbreviation or

syntactic sugar for an expression, and never changes its meaning.
The dynamic behavior of a system is expressed in TLA+ as a transition system, with an initial state

predicate, and actions to describe the transitions. An action formula describes the changes of state variables
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after a transition. In an action formula, x denotes the value of a variable x in the origin state, and x ′ denotes
its value in the destination state. A prime is never used to distinguish symbols but always means �in the
next state�. enabled A is a predicate which is true in a state i� the action A is feasible, i.e. there exists a
next state such that A is true.

A speci�cation of a system is written as Init ∧ 2[Next ]vars ∧ F , where Init is a predicate specifying
the initial states, 2 is the temporal operator which asserts that the formula following it is always true,
Next is the transition relation, usually expressed as a disjunction of actions, [Next ]vars is de�ned to equal
Next ∨vars ′ = vars (Next with stuttering), and F expresses fairness conditions. Fairness is usually expressed
as a conjunction of weak or strong fairness on actions WFvars(A1) ∧WFvars(A2) . . . ∧ SFvars(Ai) . . .. Weak
fairness WFv (A) means that either in�nitely many A steps occur or A is in�nitely often disabled. In other
words, an A step must eventually occur if A is continuously enabled. Strong fairness SFv (A) means that
either in�nitely many A steps occur or A is eventually disabled forever. In other words, an A step must
eventually occur if A is repeatedly enabled.

System properties are speci�ed using linear temporal logic (LTL). 2φ means that φ holds in every su�x
of the behavior. 3φ is de�ned to equal ¬2¬φ and means that φ eventually holds in a subsequent state.
ψ ; φ is de�ned to equal to 2(ψ ⇒ 3φ) and means that, whenever ψ holds, then later φ holds.

4.2. System Model

De�nition 4.1 (Peer). Let C be an enumerable set of channels. A peer Pp is a labeled transition system
TSp = (Sp , Ip ,Rp ,Lp) where Sp is the set of states, Ip is the set of initial states (Ip ⊆ Sp), Lp is a (enumerable)
set of labels, and Rp ⊆ Sp × Lp × Sp is the transition relation.

The set of labels Lp contains τ and a subset of
⋃
c ∈ C{c!, c?}. τ is an internal action and we assume

stuttering: ∀s ∈ Sp : s
τ−→ s ∈ Rp . The labels c! and c? are interpreted as the sending of a message on

channel c, and the reception of a message from channel c.

To describe communication properties, we need to know the listened channels in a given state. For
instance, consider a state s where messages on the channels c1 and c2 may be handled by Pp (this means

that ∃s1 ∈ Sp : s
c1?−−→ s1 ∈ Rp and ∃s2 ∈ Sp : s

c2?−−→ s2 ∈ Rp), and two messages are in transit on c1 and c2.
If the communication ensures a FIFO ordering and both messages have the same sender, then only the oldest
one may be delivered to the peer. Thus, the other transition must be disabled in this con�guration. However,
if in the state s only the channel c2 is listened to, the message on c2 may be delivered even if it is younger
than the message on c1. Recall that it is the communication model which pushes messages to the peer.

De�nition 4.2 (Listened Channels). Let s be a state in Sp ,

LCp(s)
∆
= {c ∈ C | ∃s1 ∈ Sp : s

c?−→ s1 ∈ Rp}

De�nition 4.3 (Communication Model). A communication model CM is a labelled transition system
with stuttering (SCM , ICM ,RCM ,LCM ), where SCM , ICM , RCM and LCM have the same meaning as above
(states, initial states, transition relation, labels).

The set of labels contains τ , a subset of N ×
⋃
c ∈ C{c!} (send events by peer p on channel c), and a

subset of N×
⋃
c ∈ C{c?}×P(C) (receive events by peer p on channel c while listening to a set of channels).

The actual de�nition of a communication model depends on its characteristics and examples are provided
in Section 4.3.

De�nition 4.4 (Composed System). The composed system System = (S , I ,R) is the product of the
TSp : p ∈ 1..N with a communication model CM

• S = S1 × . . .× SN × SCM

• I = I1 × . . .× IN × ICM

• R =

s → s ′

∣∣∣∣∣∣∣
 Internal actions

scm
τ−→ s ′cm ∈ Rcm

∧ ∀p ∈ 1..N : sp
τ−→ s ′p ∈ Rp

 ∨
 Communication

∃p ∈ 1..N : ∃c ∈ C :
send(s, s ′, p, c)

∨ receive(s, s ′, p, c)
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Thus, a system state s is a tuple (s1, . . . , sN , scm). Given a system state s, we note sp the projection
πp(s) of s on Pp , and scm the projection of s on CM.

The transition relation of the composed system contains on the one hand the internal actions of each peer,
and on the other hand communication transitions. Contrary to the synchronous model, where communication
is a rendez-vous between two peers, asynchronous communication is modeled with distinct send actions and
receive actions:

send(s, s ′, p, c)
∆
=


sp

c!−→ s ′p ∈ Rp

scm
p,c!−−→ s ′cm ∈ Rcm

sk
τ−→ s ′k ∈ Rk ,∀k 6= p, cm

receive(s, s ′, p, c)
∆
=


sp

c?−→ s ′p ∈ Rp

scm
p,c?,L−−−−→ s ′cm ∈ Rcm where L = LCp(sp)

sk
τ−→ s ′k ∈ Rk ,∀k 6= p, cm

Internal actions allow for parallel internal evolution of the peers and the communication model, but it
does not allow for parallel independent communication actions. However, as stated in Section 2.1, interleaving
and parallelism are equivalent as the compatibility properties in 4.4 are all stable properties. To avoid in�nite
stuttering, we assume a minimal progress property: the peers and the communication model can in�nitely
stutter only if no other transition can be done. In the TLA+ speci�cation, this is obtained by having weak
fairness (WF) on every action.

Figure 10 (see Figure 9 for the trans action in the peermanagement module) shows an example of a
system composed of two peers. The module instantiates the causal communication model to get the send
and receive actions. The two peers are respectively initialized in states 11 and 14. Two transitions depart
from state 14, depending on the reception channel. In the following, the terminal states are di�erentiated
between correct terminal states and faulty states reached because of an unexpected reception (for instance,
state 17 is unreachable with the causal communication model, but is reachable with the fully asynchronous
model). Details are provided in the following sections, especially in 4.4 and 4.5.2.

4.3. Asynchronous Communication Models

The seven asynchronous communication models are described in Table 2. This table contains the logical
descriptions of the communication models, not their implementations. An actual implementation of the
system would use more e�cient realizations of the communication models, such as vector/matrix clocks for
causality, or numbering for FIFO ordering.

In the description, all communication models have a net variable, initially empty, which holds the messages
in transit. A message is 〈 channel, sender, message history 〉, which consists of a channel, an emitting site
identi�er, and a history of previously sent messages. Depending on the communication model, a global history
variable H or a tuple of history variables Hp (one for each peer), also initially empty, are used3. Histories
hold the set of all sent messages, or the set of sent messages by a peer, or the current causal past (the set of
messages on which the next emission is causally dependent). The history variables have two roles:

• Carrying the logical information in the distributed system to ensure ordering properties. Typically, a
reception predicate can require that no message in transit appears in the history of the to-be-received
message. The history and possibly the sender are used to decide on the delivery of the message (receive
action).

• Identifying messages: history variables always expand by appending new messages in which their previous
value appear. Using histories provides a way to ensure the uniqueness of messages.

As an example, Figure 11 shows the TLA+ module corresponding to the causal communication model.
It is a direct translation of the formulae of Table 2. All the models are available at http://hurault.perso.
enseeiht.fr/asynchronousCommunication/.

3 Those are not the same as Dijkstra's history variables which are used to help/enable a correctness proof; here, history variables
hold the necessary information on past events to realize deliveries with a speci�c ordering.

http://hurault.perso.enseeiht.fr/asynchronousCommunication/
http://hurault.perso.enseeiht.fr/asynchronousCommunication/
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module peermanagement
extends Naturals, Sequences
constant BOTTOM STATE , EMPTY STATE
variable peers

PeersTypeInvariant
∆
= peers ∈ Seq(Nat)

trans(peer , init , next)
∆
= Peer transition from state init to next.

∧ peers[peer ] = init
∧ peers ′ = [peers except ! [peer ] = next ]

AllPeersIn(states)
∆
= ∀ i ∈ domain peers : peers[i ] ∈ states Peers state-based com-

patibility properties:
no faulty reception
and termination.

OnePeerIn(states)
∆
= ∃ i ∈ domain peers : peers[i ] ∈ states

NonBottom
∆
= 2¬OnePeerIn({BOTTOM STATE})

Terminates
∆
= 32AllPeersIn({EMPTY STATE})

Fig. 9. TLA+ Module for the Management of the Peers

module composition
extends Naturals, peermanagement
constant N
variables net , H
vars

∆
= 〈net , H , peers〉

Com
∆
= instance causal with CHANNEL← {�a� , �b�}

Init
∆
= ∧ Com !Init ∧ peers = 〈11, 14〉 N = 2, Initial states: First peer: state11 Second peer: state14

First peer: a!.b!

t1(peer)
∆
= trans(peer , 11, 12) ∧ Com !send(peer , �a�) First peer: state11

a!−→ state12

t2(peer)
∆
= trans(peer , 12, 13) ∧ Com !send(peer , �b�) First peer: state12

b!−→ state13

Second peer: a?.b? + b?

t3(peer)
∆
= trans(peer , 14, 15) ∧ Com !receive(peer , �a� , {�b� , �a�}) Second peer: state14

a?−−→ state15

t4(peer)
∆
= trans(peer , 15, 16) ∧ Com !receive(peer , �b� , {�b�}) Second peer: state15

b?−−→ state16

t5(peer)
∆
= trans(peer , 14, 17) ∧ Com !receive(peer , �b� , {�b� , �a�}) Second peer: state14

b?−−→ state17

Fairness
∆
= ∀ i ∈ 1 . . N : (WFvars(t1(i)) ∧WFvars(t2(i)) ∧WFvars(t3(i)) ∧WFvars(t4(i)) ∧WFvars(t5(i)))
∧WFvars(Com ! internal ∧ unchanged peers)

Next
∆
= ∃ i ∈ 1 . . N : (t1(i) ∨ t2(i) ∨ t3(i) ∨ t4(i) ∨ t5(i)) ∨ (Com ! internal ∧ unchanged peers)

Spec
∆
= Init ∧2[Next ]vars ∧ Fairness

Fig. 10. Generated TLA+ Module:
a!−→ b!−→ Composed with

a?−→ b?−→ +
b?−→.

The communication models in Table 2 may involve redundant or unused information. For instance, a
message in M

sys
n−1 does not need to carry information about its sender: this model consists in ordering

messages received on the same peer regardless of the emitting peer. In M sys
async and M sys

rsc , the role of the
histories is limited to distinguishing messages and ensuring their uniqueness, and a simpler identi�er would
have su�ced. Similarly, inM sys

n−n , a simple global counter is enough to implement it. The speci�cation choices
have been made to provide consistency between the communication models with the purpose of comparison.

One interesting point is that there are both �centralized� descriptions where a global shared history is
used (M sys

n−n , M
sys
n−1), and �distributed� descriptions, where each peer has its own history variable and no

shared variable is necessary (M sys
rsc , M

sys
1−n , M

sys
causal , M

sys
1−1, M

sys
async). This is conform to the observations in

Section 2.4, where some models were classi�ed as centralized. This is of importance for M
sys
n−1, which is

sometimes displayed as a realistic asynchronous distributed model and is confused with M
sys
1−1.
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model vars
send

scm
p,c!−−−→ s′cm

receive

scm
p,c?,L−−−−→ s′cm

M sys
rsc net , 〈Hp〉

net = ∅
∧ net ′ = {〈c, p,Hp〉}
∧ H ′p = Hp ∪ {〈c, p,Hp〉}
∧ ∀k 6= p : H ′

k
= Hk

∃〈c1, j , h1〉 ∈ net :
c1 = c
∧ net ′ = net \ {〈c1, j , h1〉}
∧ ∀k : H ′

k
= Hk

M sys
n−n net ,H

H ′ = H ∪ {〈c, p,H 〉}
∧ net ′ = net ∪ {〈c, p,H 〉}

∃〈c1, j , h1〉 ∈ net :
c1 = c
∧ ¬∃〈c2, l , h2〉 ∈ net : 〈c2, l , h2〉 ∈ h1
∧ net ′ = net \ {〈c1, j , h1〉}
∧ H ′ = H

M sys
1−n net , 〈Hp〉

H ′p = Hp ∪ {〈c, p,Hp〉}
∧ net ′ = net ∪ {〈c, p,Hp〉}
∧ ∀k 6= p : H ′

k
= Hk

∃〈c1, j , h1〉 ∈ net :
c1 = c
∧ ¬∃〈c2, l , h2〉 ∈ net : l = j ∧ 〈c2, l , h2〉 ∈ h1
∧ net ′ = net \ {〈c1, j , h1〉}
∧ ∀k : H ′

k
= Hk

M sys
n−1 net ,H

H ′ = H ∪ {〈c, p,H 〉}
∧ net ′ = net ∪ {〈c, p,H 〉}

∃〈c1, j , h1〉 ∈ net :
c1 = c
∧ ¬∃〈c2, l , h2〉 ∈ net : c2 ∈ L ∧ 〈c2, l , h2〉 ∈ h1
∧ net ′ = net \ {〈c1, j , h1〉}
∧ H ′ = H

M sys
causal

net , 〈Hp〉
H ′p = Hp ∪ {〈c, p,Hp〉}
∧ net ′ = net ∪ {〈c, p,Hp〉}
∧ ∀k 6= p : H ′

k
= Hk

∃〈c1, j , h1〉 ∈ net :
c1 = c
∧ ¬∃〈c2, l , h2〉 ∈ net : c2 ∈ L ∧ 〈c2, l , h2〉 ∈ h1
∧ net ′ = net \ {〈c1, j , h1〉}
∧ H ′p = Hp ∪ h1 ∪ {〈c1, j , h1〉}
∧ ∀k 6= p : H ′

k
= Hk

M sys
1−1 net , 〈Hp〉

H ′p = Hp ∪ {〈c, p,Hp〉}
∧ net ′ = net ∪ {〈c, p,Hp〉}
∧ ∀k 6= p : H ′

k
= Hk

∃〈c1, j , h1〉 ∈ net :
c1 = c
∧ ¬∃〈c2, l , h2〉 ∈ net : l = j ∧ c2 ∈ L ∧ 〈c2, l , h2〉 ∈ h1
∧ net ′ = net \ {〈c1, j , h1〉}
∧ ∀k : H ′

k
= Hk

M sys
async net , 〈Hp〉

H ′p = Hp ∪ {〈c, p,Hp〉}
∧ net ′ = net ∪ {〈c, p,Hp〉}
∧ ∀k 6= p : H ′

k
= Hk

∃〈c1, j , h1〉 ∈ net :
c1 = c
∧ net ′ = net \ {〈c1, j , h1〉}
∧ ∀k : H ′

k
= Hk

(Initially, all vars are equal to ∅.)

Table 2. Formalization of the Communication Models. The send column contains the transition predicate
for peer p to send a message on channel c; the receive column contains the transition predicate for peer p
to receive a message on channel c while listening to the set of channels L.

Besides, it is also possible to count and/or limit the number of messages in transit, for the full network
or on its projections (number of messages in transit for each channel). A counter of messages in transit is
updated at send and receive transitions. This counter can be used to ascertain if the number of messages in
transit is e�ectively bounded. When a bound is enforced at send transitions, it is used to quickly check if a
system may be realizable. Note that this implies that the emission of a message is not always enabled.

4.4. Compatibility

In the following, we de�ne what it means for a set of peers to be compatible. Compatibility properties and
the required information they rely on are introduced.

4.4.1. States of Interest

In order to de�ne compatibility criteria, we o�er the possibility to mark subsets of states in each peer. We
focus on two markings: terminal states and faulty states. Terminal states account for states that characterize
a peer that has reached a point where the tasks it was supposed to perform are done. Faulty states designate
states reached after an unexpected reception (that is to say a reception, imposed by the communication
model, that is not correctly handled by a peer). Whether a state is terminal, faulty, or unmarked, is part of
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module causal
extends Naturals, FiniteSets
constants CHANNEL, N
variables net , H
Init

∆
= ∧ net = {} ∧H = [i ∈ 1 . . N 7→ {}]

EmptyNetwork
∆
= net = {}

nochange
∆
= unchanged 〈net , H 〉

internal
∆
= false

send(peer , chan)
∆
= Emission from peer of message #id on channel chan

let message
∆
= 〈chan, peer , H [peer ]〉in

∧ net ′ = net ∪ {message}
∧ H ′ = [H except ! [peer ] = H [peer ] ∪ {message}]

receive(peer , chan, listened)
∆
= Reception on peer (while listening

on channels in listened) of a mes-
sage emitted on chan

∃ 〈c1, p1, h1〉 ∈ net :
∧ c1 = chan
∧ ¬(∃ 〈c2, p2, h2〉 ∈ net : c2 ∈ listened ∧ 〈c2, p2, h2〉 ∈ h1)
∧ net ′ = net \ 〈c1, p1, h1〉
∧H ′ = [H except ! [peer ] = H [peer ] ∪ h1 ∪ {〈c1, p1, h1〉}]

Fig. 11. TLA+ Module Associated to the Causal Communication Model

the speci�cation of the peer. The notion of terminal and faulty states implies that once a peer has reached
such a state, it shall remain in it. No behaviour is speci�ed after an unexpected reception (hence the term
"unexpected") and it makes sense to a�rm that a terminal state is indeed terminal. Then, it is not necessary
to distinguished between di�erent states with the same marking, and we collapse all the terminal states (resp
faulty states) into one. We de�ne the two universal peer states:

• 0 the terminal state,

• ⊥ the faulty state.

4.4.2. Compatibility Properties

A compatibility property is given as an LTL formula over a system [MP92]. Let System = (S , I ,R) be a
system with N peers. For a state s = (s1, . . . , sN , sCM ) ∈ S , the following predicates are de�ned:

• 0∀
∆
= ∀p ∈ 1..N : sp = 0 (peers are all in the terminal state)

• 0p
∆
= sp = 0 (termination of peer p)

• ⊥∃
∆
= ∃p ∈ 1..N : sp = ⊥ (an unexpected message has been delivered)

The following compatibility properties are de�ned:

System termination The system always reaches the terminal state:
System |= ♦�0∀

Peer termination The peer p always reaches the terminal state:
System |= ♦�0p

No faulty receptions No unexpected reception ever occurs:
System |= �¬⊥∃

Absence of (Communication) Deadlock4 : No state is stable except termination or fault:
System |= ♦�0∀ ∨ ♦�⊥∃ ∨ ∀s ∈ S : �♦¬s

4 Actually, we use TLC's native detection of deadlock, which checks enabled(Next). Note that Next may include user stuttering
which is distinguished by TLC from the implicit stuttering of [Next ]vars .
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Fig. 12. Main Steps Performed by the Framework Including Optional User Friendly Steps

4.5. User Friendliness

Peers are speci�ed with transition systems. Explicitly de�ning even quite simple peers can be cumbersome
and one may want to step back and provide more abstract speci�cations. Furthermore, in order to check
the compatibility of systems these peers take part in, information about terminal and faulty states has to
be provided. For these reasons the proposed framework provides alternative ways to specify peers. In the
following we will see how speci�cations of peers can be derived from CCS terms using the standard CCS
rules and a transition completion step. These additional and optional steps are summed up in Figure 12.

4.5.1. Alternative Speci�cation of Peer

A peer can alternatively be de�ned by a process speci�ed with a CCS term where we consider:

• the empty process 0, neutral element of + and ‖,
• the pre�xing operator ·, to perform an action followed by a process. An action is τ (an internal action),
or c! (a send action over a channel c), or c? (a receive action on c),

• the choice operator +,

• the parallel composition operator ‖,
• and process identi�ers (de�ned by X

∆
= Process).

The peer transition system is derived from the CCS term using the standard CCS rules [Mil99, p.39] and
excluding the synchronous communication rule reactt . Renaming and restriction are currently not used
but they would have no impact on the veri�cation of the compatibility. Since synchronous communication is
not used, ‖ is similar to an interleaving operator. It can model internal parallelism and dynamic creation of
processes inside a given peer. The translation from a CCS term to a transition system is achieved through
the Edinburgh Concurrency Workbench [CPS93]. We directly use the ability of The Concurrency Workbench
to output the transition system of a CCS term (command graph, no change was required to the software).
Each peer is independently translated, and as the translation is not applied to the composed system (the set
of peers), synchronous communication (reaction in Milner's vocabulary) does not occur, and only observable
actions (Milner's vocabulary) appear in the translation.

On-the-�y construction of the transition systems would make incompatibility detection more e�cient as
the complete transition system may be unnecessary for a counter-example, but proving compatibility would
still require constructing all transitions of the peers. PlusCal speci�cations [Lam09], for instance, could also
o�er practical alternatives to CCS and the explicit generation of transitions.

4.5.2. Faulty Reception Completion

The faulty reception completion (FRC) consists in revealing the unexpected receptions in a peer and mark
them as faulty. It adds the corresponding transitions and makes them point toward the faulty state (de-
noted ⊥) introduced in 4.4.1. The completion ensures that the peer �ts the intuitive viewpoint where the
communication medium imposes messages.

The way transition systems are completed follows the de�nition of listened channels. Informally, for
each state s where a receive transition exists, the future listened channels of s, i.e. the set of channels
corresponding to possible future receptions, is computed. For each channel c in the future channels that is
not already speci�ed as an alternative choice in s, such a choice is provided by a transition towards ⊥ and

labeled by c?: s
c?−→⊥. These are called faulty receptions.



On the Diversity of Asynchronous Communication 17

{a,b,c}
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⊥
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c?

⊥

⊥

⊥

Fig. 13. Example of Faulty Reception Completion

De�nition 4.5 (Faulty Reception Completion). Let TS = (S , I ,R,L) be a peer.

FRC (TS )
∆
= (S ∪ {⊥}, I ,R ∪ R2,L) with R2 = {s c?−→ ⊥ | s ∈ RS (S ), c ∈ FC (s) \ LC (s)}, and

• RS (S )
∆
= {s ∈ S | ∃c ∈ C , s ′ ∈ S : s

c?−→ s ′ ∈ R}
(states having at least one receive transition)

• FC (s)
∆
= {c ∈ C | ∃s1, s2 ∈ S : s → s1 ∈ R∗ ∧ s1

c?−→ s2 ∈ R}
where R∗ is the re�exive transitive closure of {(s1, s2) ∈ S 2 | ∃l ∈ L : s1

l−→ s2 ∈ R}.
(future channels (possible receptions) in s)

• LC (s)
∆
= {c ∈ C | ∃s ′ ∈ S : s

c?−→ s ′ ∈ R} (see De�nition 4.2)
(listened channels in state s)

For instance, let us consider the peer represented on the left in Figure 13. The future channels are
indicated next to each state. When there is no departing reception of a future channel, a faulty transition is

added which results in the peer represented on the right. When composed with a peer
a!−→ b!−→ c!−→ and M

sys
1−1,

the faulty receptions are impossible (because the send order is respected) and the peer always ends up in the
far-right state (which may be of interest; e.g. 0 the terminal state). This cannot be guaranteed with M sys

async ,
and the faulty state ⊥ is reachable in the composition.

4.6. Composite Communication Models

Up to this point systems are composed of a set of peers associated to a communication model that ensures
ordering properties on the communication medium. Messages transiting between the peers on all the channels
involved in the communication are handled by a unique communication model. However, some practical cases
require that di�erent sets of channels be associated to di�erent instances of communication models. This
motivates the speci�cation of composite communication models.

Messages on channels that are associated to only one model are emitted on (resp received from) one
instance of that model. Messages on channels that are associated to several models are simultaneously
emitted on (resp received from) instances of these models. Therefore, the reception of a message on such a
channel can only occur when the ordering properties of all the involved communication models are met. For
instance, if a, b, and c are channels associated to an instance of M sys

causal and c, d to an instance of M sys
1−1,

then the reception of a message from c will require that it respects the causality of the emissions on a, b,
and c, while also respecting the order of emissions on c and d from the same peer.

When a message is received from a channel, it has to be retrieved from every communication model
instance it is associated to. In each of these instances, the same message can be locally identi�ed by a
di�erent history. To prevent inconsistent receptions, messages are given a global id shared in the di�erent
instances.

Figure 14 shows the generated TLA+ module associated to a composite communication model that takes
into account channels that can be associated to the FIFO 1-1 communication model (channels exclusively in
CH 1), the causal communication model (channels exclusively in CH 2), or both (channels in CH 1 and CH 2).
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module multicom
extends Naturals
constants N , CH 1, CH 2
variables messid , net1, H 1, net2, H 2

Var1
∆
= 〈net1, H 1〉 Two primitive communication models

Var2
∆
= 〈net2, H 2〉

Vars
∆
= 〈Var1, Var2〉

Com1
∆
= instance �fo11 with CHANNEL ← CH 1, net ← net1, H ← H 1

Com2
∆
= instance causal with CHANNEL← CH 2, net ← net2, H ← H 2

ALLCHANNELS
∆
= CH 1 ∪ CH 2

Init
∆
= messid = [chan ∈ ALLCHANNELS 7→ {}] ∧ Com1 !Init ∧ Com2 !Init

max id(chan)
∆
= choose n ∈ messid [chan] : ∀ p ∈ messid [chan] : p ≤ n

available id(chan)
∆
= if messid [chan] = {} then 1 else ( Message id generation and reuse

choose n ∈ 1 . . max id(chan) + 1 : n /∈ messid [chan] ∧ (∀ p ∈ 1 . . n : p = n ∨ p ∈ messid [chan]) )

EmptyNetwork
∆
= Com1 !EmptyNetwork ∧ Com2 !EmptyNetwork

nochange
∆
= unchanged messid ∧ Com1 !nochange ∧ Com2 !nochange

internal
∆
= ∧ unchanged messid
∧ ((Com1 ! internal ∧ Com2 !nochange) ∨ (Com2 ! internal ∧ Com1 !nochange))

send(peer , chan)
∆
=

let id
∆
= available id(chan)in

∧messid ′ = [messid except ! [chan] = @ ∪ {id}] Take available id
∧ On a channel from second group only: send on Com2

∨ (chan /∈ CH 1 ∧ chan ∈ CH 2 ∧ unchanged Var1 ∧ Com2 !send(peer , chan, id))
On a channel from �rst group only: send on Com1

∨ (chan ∈ CH 1 ∧ chan /∈ CH 2 ∧ unchanged Var2 ∧ Com1 !send(peer , chan, id))
On a channel from both group: send simultaneously (same message id) on Com1 and Com2

∨ (chan ∈ CH 1 ∧ chan ∈ CH 2 ∧ Com1 !send(peer , chan, id) ∧ Com2 !send(peer , chan, id))

receive(peer , chan, listened)
∆
=

∃ id ∈ messid [chan] :
∧messid ′ = [messid except ! [chan] = @ \ {id}] Release message id for reuse
∧ On a channel from second group only: receive from Com2

∨ (chan /∈ CH 1 ∧ chan ∈ CH 2 ∧ unchanged Var1 ∧ Com2 !receive(peer , chan, id , listened))
On a channel from �rst group only: receive from Com1

∨ (chan ∈ CH 1 ∧ chan /∈ CH 2 ∧ unchanged Var2 ∧ Com1 !receive(peer , chan, id , listened))
On a channel from both group: receive simultaneously (same message id) from Com1 and Com2

∨ (chan ∈ CH 1 ∧ chan ∈ CH 2
∧ Com1 !receive(peer , chan, id , listened) ∧ Com2 !receive(peer , chan, id , listened))

Fig. 14. Composite Communication Model with M
sys
1−1 and M

sys
causal

The TLA+ speci�cations of the primitive communication models are extended to carry the message identi-
�ers.5

5 These identi�ers are not involved in the ordering properties of these models which are de�ned on the histories.
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5. Validation of the Framework

This section explains why the speci�cations of the models in the framework (M sys
∗ of Section 4.3) are

consistent with the descriptions of the concrete models (M∗ of Section 2). We show that the hierarchy of
the models is preserved in regard of re�nement. We study both how M

sys
∗ are correct with regard to M∗

(any generated execution with M
sys
∗ conforms to M∗), and how they are complete (M sys

∗ generate all valid
executions of M∗). The correctness is restricted to a class of systems (it requires that the peers have a certain
regularity with regard to listened channels, as was previously hinted), and the completeness is restricted to
a class of systems and executions.

5.1. Re�nement Between Models

This section proves that the hierarchy of the communication models is preserved. This theorem is useful as
the correctness and completeness results below are stated for systems/executions with additional constraints
and are not universal, whereas this hierarchy of communication models is valid independently of the peers.
We are comparing two labelled transitions systems, described with di�erent variables, but using the same
labels. The hierarchy is actually formed of re�nements.

De�nition 5.1 (Re�nement of the Communication Models). LetM sys
1 ,M sys

2 be two communication
models. M sys

1 is a re�nement of M sys
2 for the relation Rel i� (I , S , L, and R are the set of initial states, the

set of states, the labels, and the transition relation as de�ned in De�nition 4.3):
• ∀e1 ∈ IM sys

1
: ∃e2 ∈ IM sys

2
: Rel(e1, e2) : the initial states are in relation.

• ∀e1 ∈ SM sys

1
, e2 ∈ SM sys

2
, e ′1 ∈ SM sys

1
, l ∈ LM sys

1
:

Rel(e1, e2) ∧ e1
l−→ e ′1 ∈ RM

sys

1
⇒ ∃e ′2 ∈ SM sys

2
: Rel(e ′1, e

′
2) ∧ e2

l−→ e ′2 ∈ RM
sys

2

If two states are in relation, for any transition in the re�ned system, there must
exist a transition in the original system.

e1

l

��

Rel
e2

l

��

e ′1
Rel ∃e ′2

De�nition 5.2 (≺). Let M sys
1 ,M sys

2 be two communication models. We note M sys
1 ≺ M

sys
2 if there exists

Rel such that M sys
1 is a re�nement of M sys

2 for the relation Rel .

Theorem 5.3 (Comparison of the Communication Models, with regard to Re�nement).

• M sys
rsc ≺ M

sys
n−n ≺ M

sys
1−n ≺ M

sys
causal ≺ M

sys
1−1 ≺ M sys

async

• M sys
rsc ≺ M

sys
n−n ≺ M

sys
n−1 ≺ M

sys
causal ≺ M

sys
1−1 ≺ M sys

async

Proof. The proofs of re�nement are �rst order implications with quanti�ers derived from Table 2. They
are well adapted to SMT solvers, and they have been mechanized and checked with Why3 [Fil13] with
the assistance of Alt-Ergo and CVC4. The proofs are available on http://hurault.perso.enseeiht.fr/
asynchronousCommunication/refinements.why. A proof of re�nement has also been conducted in the
TLA+ Proof System for similar models, requiring additional unique identi�ers of the messages [CHMQ16].

5.2. Framework Executions vs Distributed Executions

Strictly speaking, distributed executions as considered in Section 2 are sequences of events; traces of the
transition system built in Section 4.2 are sequences of states. We now need to relate these two kinds of
executions6.

Let us consider a maximal trace t of the transition system built in De�nition 4.4, which thus satis�es
t0 ∈ I ∧ ∀j ∈ N : (tj , tj+1) ∈ R (I being the initial states and R being the transition relation; as R includes
stuttering, the maximal traces are in�nite). The corresponding execution is the sequence of transitions
(tj , tj+1), for j ∈ N. In the models M sys

∗ , a transition is either an internal action, or a send transition, or a
receive transition.

6 To avoid ambiguity, we use the term execution for a sequence of events and for a sequence of transitions, and trace for a
sequence of states. In transition systems, a maximal trace is commonly called an execution. Here, execution is the dual of trace.

http://hurault.perso.enseeiht.fr/asynchronousCommunication/refinements.why
http://hurault.perso.enseeiht.fr/asynchronousCommunication/refinements.why
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De�nition 5.4 (Framework Executions). For a set of peers S and a communication model M sys
∗ , where

∗ ∈ {async, 1−1, causal , 1−n,n−1,n−n, rsc},
Exec(S ,M sys

∗ )
∆
= {dual(t) : t is a maximal trace of S composed with M

sys
∗ }

where dual is the least �xed point solution to:
dual(t) = event(t0, t1) · dual(t+1), where t+1 is t with t0 removed, and · is a sequence constructor

event(t0, t1) =

{
i i� t0 = t1
s(m) i� ∃p,∃c,∃m : send(t0, t1, p, c) ∧ {m} = net ′ \ net
r(m) i� ∃p,∃c,∃m : receive(t0, t1, p, c) ∧ {m} = net \ net ′

For the communication models in Table 2, the function event is deterministic and de�ned for all couples
of consecutive states of a trace. This derives from the actions in Table 2 where the variable net is either
unchanged (internal transition), or increased (send action), or decreased (receive action). Without ambiguity,
the action is uplifted to get a label (internal action, send, receive). The corresponding execution σ of a
maximal trace is a sequence of {i , s(m), r(m)}, where the messages are built by the framework according to
M

sys
∗ rules.

Theorem 5.5 (Framework Executions are Distributed Executions). For a set of peers S and a com-
munication model M ∈ {M sys

async ,M
sys
1−1,M

sys
causal ,M

sys
1−n ,M

sys
n−1,M

sys
n−n ,M

sys
rsc },∀σ ∈ Exec(S ,M ) : σ ∈ EXEC

Proof. The implementation of the communication models in the framework is based on history variables
which are designed to ensure the uniqueness of messages (they always expand by appending new messages
which they are part of), and therefore the uniqueness of communication events. In every model, before
being received, a message needs to be added to the network. Since the network is empty in the initial state,
a reception cannot occur before the associated emission. Thus the framework produces valid distributed
executions.

5.3. Correctness of the Framework

This section shows that the logical descriptions with histories realize the orders used to describe the concrete
models, and lastly, that the execution generated with M

sys
∗ are valid with regard to M∗.

5.3.1. Histories Encode Orders

The next theorem links histories (as used by the framework) and orders (as de�ned in Section 2). Receive
transitions in Table 2 include a predicate on the absence of another message which must be delivered �rst
(the ¬∃ . . . line). With this theorem, these constraints match the delivery order predicates of Table 1.

Theorem 5.6 (Order Encoding). Histories correctly encode the orders ≺σ, ≺peer or ≺causal . For a set of
peers S , an execution σ ∈ Exec(S ,M sys

∗ ), and two distinct messages m1 = 〈c1, p1, h1〉 and m2 = 〈c2, p2, h2〉
sent in σ:
M

sys
n−n : s(m1) ≺σ s(m2)⇔ m1 ∈ h2

M
sys
n−1 : s(m1) ≺σ s(m2)⇔ m1 ∈ h2

M
sys
1−1 : s(m1) ≺peer s(m2)⇔ m1 ∈ h2

M
sys
1−n : s(m1) ≺peer s(m2)⇔ m1 ∈ h2

M
sys
causal : s(m1) ≺causal s(m2)⇔ m1 ∈ h2

where s(m) is the send transition of m.

Proof.

• Cases M sys
n−n and M

sys
n−1:

⇒: s(m1) ≺σ s(m2) ⇒ ∃m,n ∈ N : s(m1) = σ[m] ∧ s(m2) = σ[n] ∧ m < n. The global history H after
sending m1 (at time m+1) contains m1. Since the history is increasing, H before sending m2 (at time
n) also contains m1. h2 is this history, so m1 ∈ h2.

⇐: m1 ∈ h2. Let n such that s(m2) = σ[n]. Since the global history is initially empty, ∃m ∈ N,m < n
such that m1 is in the global history at time m + 1 but m1 is not in the global history at time m. So
s(m1) = σ[m]. Since m < n then s(m1) ≺σ s(m2).
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• Cases M sys
1−1 and M

sys
1−n :

⇒: s(m1) ≺peer s(m2)⇒ (p1 = p2∧∃m,n ∈ N : s(m1) = σ[m]∧ s(m2) = σ[n]∧m < n). The peer history
Hp1 after sending m1 (at time m + 1) contains m1. Since histories are increasing, the peer history
before sending m2 (at time n) also contains m1. h2 is this history, so m1 ∈ h2.

⇐: m1 ∈ h2. Let n such that s(m2) = σ[n]. p1 = p2 since in a peer history all messages are from the
same peer. Since the peer histories are initially empty, ∃m ∈ N,m < n such that m1 is in the peer
history at time m + 1 but m1 is not in the peer history at time m. So s(m1) = σ[m]. Since m < n
and p1 = p2 then s(m1) ≺peer s(m2).

• Case M sys
causal : a history carries the causal past of a message, that is the set of messages which causally

precede this message [BJ87, Bir96, KS11, Ray13]:

� Send event: the current causal past of the peer is piggybacked in the message m, and the causal past
of the next sent message from this peer will contain the message m;

� Receive event: the causal past of the peer becomes the union of the current causal past of the peer, of
the causal past of the received message (piggybacked in the message), and the message itself. Thus,
the causal past of a future message from this peer will have all the messages which causally precede
it, from the same peer or from peers which have, directly or indirectly, communicated with it.

If s(m1) ≺causal s(m2), there is a causal path from s(m1) to s(m2), and m2 contains m1 in its causal past
(its history). Conversely, if m1 is in the history of m2, it means m1 is in the causal past of m2, and thus
that m1 was sent causally before m2.

5.3.2. Stability with regard to Interest

The stability with regard to interest indicates that, if a peer is not interested in a channel at a given time
(i.e. it is not listening to it), then it will never be interested in it later: the set of listened channels can only
decrease. This property is actually acquired when faulty receptions are added (faulty reception completion
in Section 4.5.2) and is a natural property when asynchronous communication is present: violating it allows
to arbitrarily anticipate or postpone a reception (especially a message which arrives at an unexpected point).
Without stability, the peer could choose which messages it wants, and it is contrary to our assumption that
it is the communication medium which pushes messages to the peers.

For instance, consider the peers {s0
a!−→s1

b!−→s2, s3
b?−→s4

a?−→s5}. This system is not stable w.r.t interest,
as in state s3, the peer is not listening to channel a, and later in state s4, it starts to listen to a. The execution
〈s(a), s(b), r(b), r(a)〉 is allowed by the de�nition of M sys

1−1, as the delivery on b is enabled in state s3 (there
is no other earlier message on the listened channels), but this execution does not conform to M1−1. On the

contrary, the completed peers are { a!−→ b!−→, b? //

a?
**

a? //

⊥
}, this system is stable w.r.t. interest, and all its

executions with any model M sys
∗ conform to M∗.

De�nition 5.7 (Stability w.r.t. interest). A peer (S , I ,R,L) is stable w.r.t. interest i� ∀s, s ′ ∈ S :
s → s ′ ∈ R∗ ⇒ LC (s ′) ⊆ LC (s).

A system is stable w.r.t. interest i� all its peers are stable w.r.t. interest.

Lemma 5.8. For any peer P , the peer FRC (P) is stable w.r.t. interest.

Proof. Let (S , I ,R,L) be the transition system associated to FRC (P). By the de�nition of FC , ∀s, s ′ ∈ S :
s → s ′ ∈ R∗ ⇒ FC (s ′) ⊆ FC (s), and by the construction of FRC (P), ∀s ∈ S : LC (s) = FC (s).

5.3.3. Correctness of the Models

This section shows that each model of the framework (M sys
∗ ) conforms to its corresponding communication

model (M∗). This often requires that the considered system is stable with regard to interest.
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Theorem 5.9 (Correctness of the Models). For a set of peers S and a communication model M sys
∗ ,

where ∗ ∈ {async, 1−1, causal , 1−n,n−1,n−n, rsc},

Exec(S ,M sys
∗ ) ⊆ Exec(M∗).

For M sys
n−1, M

sys
causal and M

sys
1−1, it is required that S is stable w.r.t. interest.

Proof.

• M sys
rsc conforms to Mrsc : given the condition on the send and receive transitions of M sys

rsc , a send transition
can only occur if net = ∅, and a receive transition can only occurs if net 6= ∅. A send transition ensures
that net ′ 6= ∅, and a receive transition ensures that net ′ = ∅. Thus, an execution in Exec(S ,M sys

rsc )
alternates send and receive transitions (with interleaved τ) and conforms to Mrsc .

• M
sys
n−n conforms toMn−n : let σ ∈ Exec(S ,M sys

n−n) and let us show that σ ∈ Exec(Mn−n). Let two messages
m1 = 〈c1, p1, h1〉 and m2 = 〈c2, p2, h2〉 such that r(m1) ∈ σ ∧ r(m2) ∈ σ ∧ s(m1) ≺σ s(m2), we need to
prove (De�nition 2.9) that r(m1) ≺σ r(m2).
s(m1) ≺σ s(m2) =⇒Thm 5.6 m1 ∈ h2
By contradiction, assume that r(m2) ≺σ r(m1). When m2 is received, m1 is still in the network. Since
m1 ∈ h2, Table 2 says that m2 cannot be received while m1 is in net . Contradiction. So r(m1) ≺σ r(m2).

• M
sys
n−1 conforms to Mn−1: let σ ∈ Exec(S ,M sys

n−1) and let us show that σ ∈ Exec(Mn−1). Let two messages
m1 = 〈c1, p1, h1〉 andm2 = 〈c2, p2, h2〉 such that r(m1) ∈ σ∧r(m2) ∈ σ∧ s(m1) ≺σ s(m2)∧peer(r(m1)) =
peer(r(m2)), we need to prove (De�nition 2.10) that r(m1) ≺σ r(m2).
s(m1) ≺σ s(m2) =⇒Thm 5.6 m1 ∈ h2
By contradiction, assume that r(m2) ≺σ r(m1). When m2 is received, m1 is still in the network. Since
m1 ∈ h2, Table 2 ensures that c1 is not of interest for the peer when m2 is received. But later, when m1

is received, c1 is of interest for the same peer (peer(r(m1)) = peer(r(m2))). This is in contradiction with
the stability of peers with regard to interest. So r(m1) ≺σ r(m2).

• M
sys
1−n conforms to M1−n : let σ ∈ Exec(S ,M sys

1−n) and let us show that σ ∈ Exec(M1−n). Let two messages
m1 = 〈c1, p1, h1〉 and m2 = 〈c2, p2, h2〉 such that r(m1) ∈ σ ∧ r(m2) ∈ σ ∧ s(m1) ≺peer s(m2), we need
to prove (De�nition 2.11) that r(m1) ≺σ r(m2).
s(m1) ≺peer s(m2) =⇒Thm 5.6 m1 ∈ h2
s(m1) ≺peer s(m2)⇒ p1 = p2
By contradiction, assume that r(m2) ≺σ r(m1). When m2 is received, m1 is still in the network. Since
m1 ∈ h2 ∧ p1 = p2, Table 2 says that m2 cannot be received while m1 is in net . Contradiction. So
r(m1) ≺σ r(m2).

• M
sys
causal conforms to Mcausal : let σ ∈ Exec(S ,M sys

causal) and let us show that σ ∈ Exec(Mcausal). Let two
messages m1 = 〈c1, p1, h1〉 and m2 = 〈c2, p2, h2〉 such that r(m1) ∈ σ ∧ r(m2) ∈ σ ∧ s(m1) ≺causal
s(m2) ∧ peer(r(m1)) = peer(r(m2)), we need to prove (De�nition 2.12) that r(m1) ≺σ r(m2).
s(m1) ≺causal s(m2) =⇒Thm 5.6 m1 ∈ h2.
By contradiction, assume that r(m2) ≺σ r(m1). When m2 is received, m1 is still in the network. Since
m1 ∈ h2, Table 2 ensures that c1 is not of interest for the peer when m2 is received. But later, when m1

is received, c1 is of interest for the same peer (peer(r(m1)) = peer(r(m2))). This is in contradiction with
the stability of peers with regard to interest. So r(m1) ≺σ r(m2).

• M
sys
1−1 conforms to M1−1: let σ ∈ Exec(S ,M sys

1−1) and let us show that σ ∈ Exec(M1−1). Let two mes-
sages m1 = 〈c1, p1, h1〉 and m2 = 〈c2, p2, h2〉 such that r(m1) ∈ σ ∧ r(m2) ∈ σ ∧ s(m1) ≺peer s(m2) ∧
peer(r(m1)) = peer(r(m2)), we need to prove (De�nition 2.13) that r(m1) ≺σ r(m2).
s(m1) ≺peer s(m2) =⇒Thm 5.6 m1 ∈ h2
s(m1) ≺peer s(m2)⇒ p1 = p2
By contradiction, assume that r(m2) ≺σ r(m1). When m2 is received, m1 is still in the network. Since
m1 ∈ h2 ∧ p1 = p2, Table 2 ensures that c1 is not of interest for the peer when m2 is received. But
later, when m1 is received, c1 is of interest for the same peer (peer(r(m1)) = peer(r(m2))). This is in
contradiction with the stability of peers with regard to interest. So r(m1) ≺σ r(m2).

• M sys
async conforms to Masync : Masync accepts any order.
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5.4. Completeness of the Models

M sys
async imposes no constraint on the delivery order of the messages and, for a set of peers S , it generates

all possible asynchronous behaviors of S . The other models generate a subset of these executions. We show
below that each model of the framework (M sys

∗ ) generates all the valid fair executions of its corresponding
communication model (M∗).

De�nition 5.10 (Fair Execution). A fair execution is an execution where all sent messages are eventually
received:

fair(σ)
∆
= ∀m ∈ MES : s(m) ∈ σ ⇒ r(m) ∈ σ

(when σ is a distributed execution, r(m) necessarily occurs after s(m))
Note: An execution which reaches the faulty state is considered fair: the ⊥ state is stable and can empty

the network by receiving and throwing away all the remaining messages in transit.

Let us consider the peers S
∆
= { a!−→ b!−→ c!−→, b? //

a?,c? ))

a? //

c? ))
}. The execution 〈s1(a), s1(b), r2(b), s1(c), r2(c)〉

is a valid execution with regard to M1−1 (it belongs to Exec(M1−1)), but it does not belong to Exec(S ,M
sys
1−1)

because the message on b cannot be delivered while a message on a is available and of interest to the peer.
The completeness with regard to fair executions is consistent with the intuition: an unfair execution is an
execution where messages can be arbitrarily put on the side. In an unfair execution, any problematic message
(i.e. an unexpected message whose delivery would invalidate the execution) can be ignored, and thus any
send behavior could be turned into a valid receive behavior. Yet, the framework goal is to check if a set of
peers are compatible, i.e. if their send behavior is compatible with their receive behavior.

De�nition 5.11 (Single Receptor System). A Single Receptor System is a system composed of a set of
peers TSp = (Sp , Ip ,Rp ,Lp), p ∈ 1..N where each channel is listened to by at most one peer (LC (s) is the
set of listened channels of state s, cf De�nition 4.2, and is overloaded on peer):

∀p, q ∈ 1..N , p 6= q : LC (TSp) ∩ LC (TSq) = ∅ where LC (TSp)
∆
=

⋃
s ∈ Sp

LC (s)

The completeness of some models requires this property. Consider the peers { a!−→ b!−→, a? //

b?
))
,
a?−→}. The

execution 〈s1(a), s1(b), r2(b), r3(a)〉 is a valid FIFO 1-1 (the messages on a and b are received on di�erent
peers), but this execution cannot be generated by the framework, as the reception on b is blocked by the
message on a: there is no way to know that, in the future, the message on a will be received by another peer,
and that the message on b can be delivered now. This problem occurs only because two peers are listening
on a.

Theorem 5.12 (Completeness of the Models). For a set of peers S and a communication model M sys
∗ ,

where ∗ ∈ {async, 1−1, causal , 1−n,n−1,n−n, rsc},
∀σ ∈ Exec(S ,M sys

async) : σ ∈ Exec(M∗) ∧ fair(σ)⇒ σ ∈ Exec(S ,M sys
∗ )

For M sys
n−1, M

sys
causal and M

sys
1−1, it is required that S is a single receptor system.

Proof. M sys
rsc is a special case and will be handled below. For the next paragraph, ∗ is any model except rsc.

The theorem is demonstrated by contradiction. Assume ∃σ ∈ Exec(S ,M sys
async) : σ ∈ Exec(M∗)∧ fair(σ)∧

σ /∈ Exec(S ,M sys
∗ ). This means that σ could be generated with M sys

async but not with M
sys
∗ while being an

M∗ execution. Let us show that such an execution does not exist.
By de�nition of Exec(S ,M sys

async), σ is the dual of a trace generated by S withM sys
async . From the re�nements

(Theorem 5.3), a set of peers S composed with M
sys
∗ has no more transitions than S with M sys

async . Thus, if

σ /∈ Exec(S ,M sys
∗ ), there exists a state where a transition is enabled in S composed with M sys

async , but, in the

corresponding state of S composed with M
sys
∗ , the transition with the same label is disabled. Let's study

this transition.

• τ transition: always enabled. Contradiction.
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• Send transition: a send transition is always enabled (except for M sys
rsc which is handled below). Thus it is

enabled with M
sys
∗ . Contradiction.

• Receive transition: a receive transition on peer TS for a message m2 = (c2, p2, h2) is disabled with
M

sys
∗ if there exists at least one message which blocks the reception of m2. There can only be �nitely

many blocking messages as they are in the past of m2. Each such message m1 = (c1, p1, h1) is in transit
(m1 ∈ net), is of interest to the peer (c1 ∈ LC (TS )), and blocks the reception of m2 (m1 ∈ h2 from the
corresponding predicate of Table 2).

� Case 1 : The message m1 is never delivered in σ. Contradiction with σ is fair.

� Case 2 : r(m1) ≺σ r(m2). After the delivery of m1, m1 /∈ net . Contradiction.

� Case 3 : r(m2) ≺σ r(m1).

· Case Mn−n : m1 ∈ h2 =⇒Thm 5.6 s(m1) ≺σ s(m2) =⇒Def 2.9 r(m1) ≺σ r(m2). Contradiction.

· Case Mn−1 (this requires that S is a single receptor system):
peer(r(m1) = peer(r(m2)): m1 ∈ h2 =⇒Thm 5.6 s(m1) ≺σ s(m2) =⇒Def 2.10 r(m1) ≺σ r(m2).
Contradiction.
peer(r(m1)) 6= peer(r(m2)): c2 ∈ LC (TS ) =⇒Def . 5.11 c1 /∈ LC (TS ). Contradiction.

· Case M1−n : m1 ∈ h2 =⇒Thm 5.6 s(m1) ≺peer s(m2) =⇒Def 2.11 r(m1) ≺σ r(m2). Contradiction.

· Case Mcausal (this requires that S is a single receptor system):
peer(r(m1) = peer(r(m2)): m1 ∈ h2 =⇒Thm 5.6 s(m1) ≺causal s(m2) =⇒Def 2.12 r(m1) ≺σ r(m2).
Contradiction.
peer(r(m1)) 6= peer(r(m2)): c2 ∈ LC (TS ) =⇒Def . 5.11 c1 /∈ LC (TS ). Contradiction.

· Case M1−1 (this requires that S is a single receptor system):
peer(r(m1) = peer(r(m2)): m1 ∈ h2 =⇒Thm 5.6 s(m1) ≺peer s(m2) =⇒Def 2.13 r(m1) ≺σ r(m2).
Contradiction.
peer(r(m1)) 6= peer(r(m2)): c2 ∈ LC (TS ) =⇒Def . 5.11 c1 /∈ LC (TS ). Contradiction.

Special case of M sys
rsc : As σ ∈ Mrsc ∧ fair(σ), σ alternates send and receive events (if σ weren't fair,

messages could be sent and never received). net is initially empty, so in all states of the corresponding trace
|net | ≤ 1. If a receive transition is enabled with M sys

async , it is enabled in the same state with M sys
rsc (same

action); as the next state ensures |net | ≤ 1, if a send transition is enabled in a state with M sys
async , the network

is empty and the send transition with M sys
rsc is enabled; a τ transition is always enabled with both models.

5.5. Conclusion on the Validation

This section has demonstrated the correctness and the completeness of the framework. For some models
(M sys

n−1, M
sys
causal and M

sys
1−1), this requires that the system is stable w.r.t. interest and is a single receptor

system. The �rst point ensures that a peer cannot ignore a message now to postpone its reception at a later
time (and thus invalidating the assumption that it is the communication model which pushes messages to
the peer); the second one ensures that no knowledge of the future behavior of other peers is necessary to
decide of a reception now. Completeness is only for fair or faulty executions as, again, an unfair execution
could arbitrarily ignore messages.

6. Experiments and Results

6.1. Practical Example

Speci�cation. Let us consider an examination management system composed of a student, a supervisor,
a secretary, and a teacher. When the supervisor notices that a student has failed, he/she sends the name of
the student to the teacher and the secretary, and the resit information to the student. If the student chooses
to resit, he/she answers ok and asks the teacher for the exam. The teacher sends the needed materials and
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Student

Secretary

Teacher

Supervisor

studentname
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materials

exam
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coffee
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resit
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cancel

mark

Student

Secretary

Teacher

Supervisor
coffee

Fig. 15. Examples of Expected Executions

Supervisor
∆
= studentname! · studentname! · resit ! · ((ok? · 0 + ko? · cancel ! ·mark ! · 0)‖(co�ee? · 0))

Secretary
∆
= co�ee! · studentname? ·mark? · 0

Student
∆
= resit? · (τ · ko! · 0 + τ · StudentOK )

StudentOK
∆
= ok ! · examreq ! ·materials? · exam? · answers! · 0

Teacher
∆
= studentname? · (cancel? · 0 + examreq? · TeacherExam)

TeacherExam
∆
= materials! · exam! · answers? ·mark ! · 0

Fig. 16. Supervisor-Secretary-Student-Teacher Speci�cation

then the exam, after which the student sends back his/her answers, then the teacher sends a mark to the
secretary. If the student declines to resit, he/she informs the supervisor who sends a cancel message to the
teacher and the former mark to the secretary. An unrelated exchange also occurs between the secretary and
the supervisor who would like to meet during the co�ee break. The secretary sends a message to inform the
supervisor that co�ee is ready. The supervisor is ready to join after he/she has sent work-related messages:
just before, after, or during the time he deals with the student's choice. Sample executions are depicted in
Figure 15 and the system is speci�ed in Figure 16.

Next, consider the properties needed to make this work as intended. There is a causal dependency
between the studentname message and the examreq message (the request for the exam must not arrive before
the student name). This causal dependency comes from the resit message, which follows the studentname
message and is the cause of the examreq message. Causal communication is thus required. Moreover, if a
cancel message is sent, it should be received after the student's name by the teacher. Therefore, cancel is part
of this causal group. The same holds for the mark channel, since the secretary �rst expects a studentname.
Besides, the materials and the exam are sent in two separate messages and are expected to be received in
this order by the student. Lastly, the co�ee break exchange requires that several messages can be in transit
so that the supervisor can send the studentname and resit messages after the secretary has sent co�ee.

This example is checked with the seven asynchronous models of Table 2, and with the following composite
model M sys

composite :

M
sys
causal : {studentname, resit , examreq , cancel ,mark}

M
sys
1−1 : {materials, exam}

M sys
async : {ok , ko, answers, co�ee} (no constraint)

Compatibility. In this example, studentname is a channel over which two messages are sent and from which
they are received by di�erent services (teacher and secretary). In addition, mark is a channel over which only
one message is to transit, but it may be emitted by di�erent services (supervisor and teacher). Therefore,
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M sys
rsc M

sys
n−n M

sys
1−n M

sys
n−1 M

sys
causal M

sys
1−1 M sys

async M
sys
composite

Termination 5 4 4 4 4 5 5 4
Termination with an empty
network

5 4 4 4 4 5 5 4

Partial termination
(secretary)

5 4 4 4 4 5 5 4

No faulty receptions 4 4 4 4 4 5 5 4
Absence of communication
deadlock

5 4 4 4 4 4 4 4

Fig. 17. Compatibility Results
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Fig. 18. Transmission of One Part Between the Three Peers

compatibility, especially termination of the secretary service, is not trivial. Consequently, in addition to the
generic compatibility properties de�ned in 4.4, we also consider the termination of the secretary and we
check if all messages have been received upon full termination.

Figure 17 presents the results. It con�rms that causality (or a model stricter than causality) is needed to
ensure compatibility of the composition. However, causality is not required over the whole set of channels.
The composite model with the considered partition is a restrictive enough communication model. In this
example, the maximal number of distinct states is 988.

6.2. Composite Communication Model: Use Case

The previous example has illustrated how channels can be partitioned and associated to di�erent communi-
cation models in order to perform sharper analysis. Here we provide a case where the need for channels to
be associated to more than one communication model arises.

Let us consider a system where a client watches a live video with subtitles. The video is stored on a
remote video server, and captioning is performed on the �y by a subtitle generator. The streams are cut into
video parts (resp. subtitle parts) denoted Vi (resp. Si) where i designates the i -th part. The client expects
to receive each video part, one after the other, and the associated subtitle part with little enough delay
between them. In order to achieve that goal, we introduce checkpoints in the streams. Each video or subtitle
part Vi (resp. Si) is preceded by the emission of an associated checkpoint message denoted VCi (resp. SCi).
FIFO 1-1 ordering is used so that messages that compose a part are received in the right order, as well as
the checkpoint messages. Figure 18 provides a possible execution where a part is transmitted as expected.

FIFO 1-1 communication is not su�cient to prevent the video stream from being late with regard to the
subtitles, as they are sent by di�erent peers (Figure 19). Causal communication on the entire system would

S3

Client

Subtitle
generator

Video
server

V1 V2 V3 V4

VC1 VC2 VC3 VC4

SC1 SC2 SC3

S1 S2

VC1

NON CAUSAL
NON CAUSAL

[...]
NON CAUSAL

VC1 frontier

Fig. 19. Desirable and Undesirable Executions with FIFO 1-1
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Fig. 20. Optimized Implementations

prevent this, but this is excessive, as a little desynchronization between a video part and its corresponding
subtitle part is not perceived. It is su�cient to consider a composite communication model, where all the
channels are associated to an M

sys
1−1 instance, and all the control point channels are also associated to an

M
sys
causal instance. Model checking of this system (three parts of two Vi/Si messages each, plus checkpoint

messages, for a total of 30 messages) generates 353988 distinct states and takes around 22s with an optimized
implementation of M sys

1−1.

6.3. Benchmarking

6.3.1. Optimized Implementations of the Communication Models

Several practical issues and restrictions arise from the logical implementations of the communication models
M

sys
∗ . For instance, as the presented communication models are based on message histories that never

decrease, we are confronted to performance limitations. Moreover, systems involving behaviors with loops,
such as for instance the trivial system composed of any communication model and two peers derived from
the CCS terms P1

∆
= a!.b?.P1 and P2

∆
= a?.b!.P2, will actually consist in an in�nite transition system.

A mechanism to purge history has been implemented, where messages that are retrieved from the network
of a communication model are recursively removed from histories. This purge reduces the previous example to
a �nite state system over which model checking always reaches a conclusion. These alternative communication
model speci�cations (denoted M sys

∗,purge) have proven useful to check practical examples. When possible, more
optimized and practical implementations (denoted M

sys
∗,impl) consist in using message counters instead of

message histories (for instance, in M
sys
1−1), or explicit sequences (for instance, for M sys

n−n). However, these
implementations are not guaranteed to be equivalent to the logical speci�cations.

6.3.2. Scenario

We consider two parameters n ≥ 0 and m ≥ 0, a1, . . . , an and b channels. Two peers are speci�ed by the
following CCS terms from which we derive transition systems and apply FRC:

(a1!. . . . .an !.b?)
m and (a1?. . . . .an?.b!)

m

The composition consists in transmitting sequences of n messages (on the ai channels) from the �rst to
the second peer. A synchronization message is exchanged (from the second to the �rst peer) between each
sequence. The messages are expected to be received in the order of their emission and a communication
model has to ensure that unexpected receptions are impossible.

The framework is used to check the termination of the proposed composition. In the following results,
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Fig. 21. Comparison Between the Formal Implementation and the Purge-Based Optimized Implementation

m 1 1 41 51 101 301

n 1 311 111 51 91 1

states 9 48834 259494 70334 432184 1209

transitions 11 97041 509801 135361 845781 1211

Table 3. Number of States and Transitions Using M sys
1−1 (Samples)

we consider M sys
1−1, an alternative speci�cation with history purge M sys

1−1,purge , and an implementation using

a queue M
sys
1−1,impl . The machine that runs the simulations is 2 × 4 cores Intel Xeon CPU E5-2690 v3 at

2.60GHz with 23GiB of memory. We focus on the number of generated states and the time required to
perform model checking. The results are presented in Figures 20 and 21 and Table 3 for M sys

1−1, M
sys
1−1,purge ,

and M
sys
1−1,impl . The results obtained with the other models of Table 2 and their di�erent implementations

are similar. Indeed, their speci�cation do not di�er much in terms of data structure and guard on reception,
and the time required to explore the state space do not vary signi�cantly. Di�erences appear between the
di�erent implementations of a given model.

6.3.3. Analysis

WithM sys
1−1,purge , the results show that the number of states and runtime linearly increase with m the number

of critical sequences. They exponentially increase when it comes to n. It accounts for the maximum number
of messages in transit at a given time and all the possible receptions that have to be visited. m corresponds
to the number of repetitions of the scenario, thus the linear pro�le. Runtime also grows exponentially for
m with M

sys
1−1 because histories of past iterations accumulate. Checking if a reception is possible requires to

explore this entire past whereas M sys
1−1,purge and M

sys
1−1,impl do not keep track of received messages.

Advantages Drawbacks

M
sys
∗ Direct translation of the formal speci�-

cation.
Keeps track of every emitted message: poor
m-type scalability.

M
sys
∗,purge Close to the formal speci�cation. No

accumulation of messages in histories.
Better m-type scalability (linear).

Additional time needed to purge histories:
state space explosion occurs earlier in terms
of maximum number of messages in transit.

M
sys
∗,impl Way better overall performances. Use-

ful as a quick �rst compatibility check
or to �nd potential counterexamples.

Equivalence to the formal speci�cation is not
guaranteed.
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7. Related Work

7.1. Distributed System

Ordered delivery has long been studied in distributed algorithms and goes back to Lamport's paper intro-
ducing logical clocks [Lam78]. Implementations of the basic communication models (Mcausal , M1−1) using
histories or clocks are explained in classic textbooks [BM93, CDK94, Tel00, KS11, Ray13], and the mini-
mum required information to realize these orders has been studied [PBS89, KS98]. Moreover, asynchronous
communication models in distributed systems have been studied and compared in [KS11] (notion of ordering
paradigm) and [CBMT96] (notion of distributed computation classes) using a similar approach based on dis-
tributed executions and the causal order on communication events [Lam78]. They both show the hierarchy
of classic communication models such as non-FIFO, FIFO or causally-ordered that respectively correspond
to Masync , M1−1 and Mcausal .

Our work is complementary in two ways. First, we consider additional distributed communication models,
namely Mn−n , M1−n and Mn−1, which are of interest since they are not totally ordered. Mn−1 for instance,
the FIFO order with instantaneous delivery, is sometimes used in the literature [OSB13] without distinction
from the classic FIFO order. Then, we consider another approach for comparison that involves system
speci�cations using transition systems to show how, in terms of compatibility checking, classic execution-
based ordering between the models [CBMT96, KS11] is preserved and how the additional commonly used
models �t into that ordering by matching the causal model.

Tel's textbook [Tel00] describes a distributed system as a collection of processes and a communication
subsystem. Each process is a transition system, and the transition system induced under asynchronous
communication is built with the product of the process transition systems extended with a collection of
messages in transit, and two rules for send and receive. His formal de�nition considers synchronous and
fully asynchronous (unordered) communication. FIFO (M1−1) and causal communication are mentioned
but are not formalized. Tel's goal is to describe distributed algorithms, whereas our objectives is to study
communication models. Our work departs from his by explicitly describing the communication subsystem
with a transition system, by considering several orderings, by comparing these communication models, and
by o�ering a framework for the veri�cation of asynchronously communicating peers based on these models.

7.2. Compatibility Checking

Compatibility of services / software components has largely been studied, with two main goals: Can ser-
vices communicate and provide more complex services? And can one service be replaced by another one
(substitutability)? These two notions of compatibility are di�erent. In the �rst case, the services must be
complementary, whereas in the second case they should provide the same functionality. Classically, either the
notion of simulation (as in [ABDF08]) or the notion of trace inclusion (as in [CLB08]) is used to express this
sameness. In this taxonomy, we can also include di�erent models of failure traces [GGH+10], where refusal
sets may be used to model (preservation of) process receiving capabilities and therefore absence of forever
pending messages. We are mainly interested in the �rst problem. Many approaches exist to verify behavioral
compatibility of web services or software components.

Di�erent formalisms are used to represent the services: �nite-state machines [DOS12, CLB08, BCT04,
FUMK04], process algebra [DWZ+06, BCPV04, CPT01], Petri nets [LFS+11, TFZ09, Mar03]. Di�erent cri-
teria are used to represent compatibility: deadlock freedom [DOS12, FUMK04], unspeci�ed receptions [BZ83,
DOS12], at least one execution leads to a terminal state [DOS12, BCT04, DWZ+06, LFS+11], all the
executions lead to a terminal state [BCT04, BCPV04], no starvation [FUMK04], divergence [BCPV04].
Domain application conditions are also used [CLB08, CPT01]. The communication models used are syn-
chronous [DOS12, BCT04, FUMK04, DWZ+06, BCPV04, CPT01] or FIFO n-1 [BBO12, OSB13].

On the speci�c point of stability w.r.t. interest (De�nition 5.7) and faulty reception completion (Sec-
tion 4.5.2), this is reminiscent of Brand and Za�ropulo's unspeci�ed reception approach [BZ83]. In their
work, if a state can receive a given message, then a successor state (accessible via send events) must also
accept this message. In other words, for a system to be correct w.r.t. unspeci�ed reception (and thus for
compatibility), if a message can be received at a given state, its reception must also be speci�ed at later
states. In our work, we reverse the proposition: if a message can be received at a given state, the commu-
nication model may deliver it earlier and the system must expect this situation. This is the stability w.r.t.
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interest property. The faulty reception completion ensures that fault transitions are introduced to get this
stability property.

To sum up, although some works are dedicated to several compatibility criteria, all of them are dedi-
cated to one communication model, mostly the synchronous model. None of them proposes a veri�cation
parameterized by both the compatibility criteria and multiple communication models. Moreover, only a few
approaches also provide a tool to automatically check the proposed composition. Compared to these works,
we propose a uni�ed formalization of several communication models and compatibility criteria, and a frame-
work which allows to check the correctness of a composition in a uni�ed manner, using any combination of
the communication models. Lastly, the prototype tool returns an invalid execution counterexample when a
compatibility criterion is not met.

7.3. System Description

7.3.1. I/O Automata

Input/output automata [Lyn96] provide a generic way to describe components that interact with each other
thanks to input and output actions. Those actions are partitioned into tasks over which fairness properties
can be de�ned in the same way fairness properties can be set over TLA+ actions. Components can either
describe processes or communication channels. They can also be composed and some output actions can be
made internal (hiding) in order to specify complex systems. I/O automata are said to be input-enabled : every
input action of an automaton is required to be enabled in every state, in order to avoid �the failure to specify
what the component does in the face of unexpected inputs� [Lyn96, p. 203]. In our work, the faulty reception
completion (Section 4.5.2) and the requirement of stability with regard to interest (De�nition 5.7) play a
similar role: the absence of unexpected messages is equivalent to the unreachability of the faulty state. I/O
automata can model asynchronous systems in a broad sense and provide a powerful framework to describe
distributed systems. However, few automatic tools have been developed to make use of IO automata and
perform modeling and property checking.

7.3.2. Process Calculi

One of the interest of process calculi is their algebraic representation which is simple, concise and powerful.
The processes are described by a term under an algebra. They are constructed from other processes thanks
to composition operators (parallel composition, sequence, alternative, . . . ). The basic processes represent
elementary actions, which are most often communication operations (send or receive).

CCS [Mil82] is an early and seminal calculus that we have chosen for its simplicity and user friendli-
ness to describe peers. Its main disadvantage for our work is that communication is synchronous. Milner
has also de�ned the π-calculus [Mil99]. The main di�erence is the introduction of parameters: channels can
be communicated through channels themselves. This allows to describe systems with dynamic con�gura-
tions. Still, the π-calculus is also synchronous. Nevertheless, some adaptation of the π-calculus have been
proposed [HT91, Bou92] to change the semantics of communication into an asynchronous one. The asyn-
chronous π-calculus represents asynchronous communication by using a send primitive with no continuation.
In [Pal03], Palamidessi proves that this asynchronous π-calculus is less expressive than the full π-calculus.
[BPV08] compares the asynchronous π-calculus with three di�erent versions of the π-calculus where channels
are explicitly represented as special bu�er processes. Those bu�ers are bags, queues or stacks depending on
the model of interest. There is a strong correspondence between the asynchronous model and the model
with bags. But that correspondence does not hold with queues and stacks. This is conform to our result of
non equivalence of our pure asynchronous model with any of our FIFO models. Since we are interested in
comparing the communication models used by the distributed computing community, their π-calculus with
queue is not satisfactory. Indeed, the FIFO property is guaranteed for a given channel, whereas distributed
algorithms use this property between peers. Since two peers can communicate together via several channels,
there is no direct correspondence between these two approaches. We haven't studied communication models
using stacks, since those models are not relevant when dealing with distributed applications, but it would
be easy to give a TLA+ speci�cation as the dual of FIFO models, using stacks instead of queues.

Richer process calculi exist, such as the Join-calculus [FG96] (and its extension to mobility [FGL+96])
based on the re�exive CHAM (CHemical Abstract Machine) [BB92] and also the Ambient calculus [CG98].
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They allow the description of separated membranes/domains, where processes interact with each other within
a domain or perform explicit actions to move in or out of domains. These calculi are mainly used to model
mobility, distribution, �rewalls and security properties. But they are not �tted to our concerns for two
reasons. Firstly, modelling distribution is not straightforward (usually a mix of local communications and
moves between domains) whereas we want to keep it as simple as possible, as distribution is at the core of
our concerns. Secondly, they are not parameterized over communication models and directly encoding them
would also be cumbersome.

There exist several model checkers for process calculi. CADP [GLMS13] analyzes high-level descriptions
written in various languages with synchronous communication, such as LOTOS, LNT (LOTOS New Tech-
nology) [SCG+00], FSP. . . We can also cite SPIN [Hol04] for Promela [Hol04, chap. 3], where communication
are realized using FIFO message channels. Our goal is not to model check process calculus. Our main concern
is the comparison of communication models and being able to check properties over a system with several
communication models (including composite ones).

8. Conclusion and Perspectives

This paper considers the diversity of point to point asynchronous communication models, more complex but
more realistic than synchronous communication, and provides two points of view to their analysis. Seven
models are exposed, some classic and some less common. In particular, the notion of FIFO communication
is clari�ed and the variants it covers are presented. All these communication models are speci�ed as proper-
ties on distributed executions involving orders on communication events (sending and receiving messages),
including Lamport's causal order. A hierarchy between the models arises from the inclusion of these orders.

Then, a framework to check compatibility of asynchronous communicating peers is presented. The com-
position can use di�erent communication models (e.g. FIFO or causal) for di�erent groups of channels. The
description of the communication models is operational but is abstract enough to not preclude realistic imple-
mentations. The conformance of the framework with the execution-based speci�cations of the communication
models is shown: correctness and completeness are proven.

The peers and the communication models are de�ned with transition systems and the composition is
close to a synchronous product of the peers and the model. Our framework is also parametric with regard
to the compatibility criteria, speci�ed as LTL properties. The framework has been instantiated in TLA+

and thus bene�ts from its tools, especially the TLC model checker. Additionally, TLA+ speci�cations of the
peers can be automatically generated from a high-level behavioral description.

On-going work aims at extending the asynchronous models, introducing broadcast (analogous to a mes-
sage consumed by more than one peer) and communication failures (message loss). A second point of interest
is to �nd the weakest communication model (in the sense of less restrictive according to the established hi-
erarchies) required to achieve compatibility. Currently, the designer speci�es which communication model is
used for each channel. Then, compatibility can be veri�ed. It would be interesting to automatically discover
the right partitioning and the weakest communication models for these partitions.

In terms of performance, the experiments show that practical implementations of communication models
push the boundaries of model checking beyond what can be expected from direct implementations of the
speci�cations. The conformity of such practical implementations with the formal speci�cations is not guaran-
teed yet. Extending the variety of implementations (close to speci�cation, realistic, or performance-oriented)
and proving their correctness and completeness would allow for more e�cient and more reliable compatibility
checking.

Lastly, we have observed that, for some stable global properties of a system, e.g. occurrence of unexpected
messages, some communication models always yield the same compatibility answer: the sets of executions
for these models are di�erent but the property is inevitable in all of them. A precise characterization of this
class of the properties would allow to switch from a communication model to a weaker one without having
to prove again the compatibility.
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